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Abstract

We consider the inviscid unsteady Prandtl system in two dimensions, motivated
by the fact that it should model to leading order separation and singularity forma-
tion for the original viscous system. We give a sharp expression for the maximal
time of existence of regular solutions, showing that singularities only happen at the
boundary or on the set of zero vorticity, and that they correspond to boundary layer
separation. We then exhibit new Lagrangian formulae for backward self-similar
profiles, and study them also with a different approach that was initiated by Elliott–
Smith–Cowley and Cassel–Smith–Walker. One particular profile is at the heart of
the so-called Van-Dommelen and Shen singularity, and we prove its generic ap-
pearance (that is, for an open and dense set of blow-up solutions) for any prescribed
Eulerian outer flow. We comment on the connection between these results and the
full viscous Prandtl system. This paper combines ideas for transport equations,
such as Lagrangian coordinates and incompressibility, and for singularity forma-
tion, such as self-similarity and renormalisation, in a novel manner, and designs a
new way to study singularities for quasilinear transport equations.

1. Introduction

We consider the inviscid Prandtl equations on the upper half-plane H := R ×
[0,∞)
⎧
⎨

⎩

ut + uux + vuy = −pEx
ux + vy = 0,
v|y=0 = 0, limy→∞u(t, x, y) = uE (t, x),

(t, x, y) ∈ [0, T ) × H,

(1.1)

where pE and uE are the trace of the Eulerian pressure and tangential flow at the
boundary R × {0} induced by the Eulerian flow at infinity. The functions pE and
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uE are prescribed, and then act as forcing terms for u. They are linked through
Bernoulli’s equation

uE
t + uEuE

x = −pEx , (1.2)

whose solutions have to be global in two dimensions.

1.1. Historic Background

1.1.1. Boundary Layer Separation and Singularities Prandtl’s system comes
from the vanishing viscosity limit of the Navier–Stokes equations with Dirichlet
boundary condition. It describes the formation of a boundary layer, where the
solution does a sharp transition from the vanishing at the boundary of an obstacle,
induced by the Dirichlet condition, to a solution of the Euler system away from its
boundary.

Prandtl describes in [29] the phenomenon of boundary layer separation, when
“a fluid layer, set rotating as a result of friction at the wall, moves out into the
free stream” (this English translation being taken from [1]). For the steady Prandtl
system, separation happens at the boundary with the condition of vanishing wall
shear stress ∂yu(x0, 0) = 0. Goldstein [17] finds that at such location the solution is
singular, and as a result so is the displacement thickness (a quantity describing the
influence of the layer on the outer flow), revealing that the layer separates past x0.
We refer to the textbook [33] for details. Dalibard and Masmoudi [9] gave recently
a mathematically rigorous description of the Goldstein singularity.

For the unsteady Prandtl system,Moore, Rott and Sears [27,30,34] realised that
∂
∂y |y=0

u = 0 was not a correct condition for separation, and came up with what is

now known as the MRS conditions. These conditions state that if a piece of layer is
separating off the boundary, then there is a point (xs(t), ys(t)) at the center of this
separating piece of layer, at which the vorticity vanishes ∂yu(t, xs(t), ys(t)) = 0,
and whose tangential velocity u(t, xs(t), ys(t)) is equal to the tangential velocity
of the whole separating piece of layer. We recall that ∂yu is the vorticity, when
considering the approximation of the Navier–Stokes equations with the Prandtl
system at high Reynolds number. It was then believed [35] that a criterion for
separation at time T0 was that at such a point the solution u becomes singular
as t ↑ T0. Van Dommelen and Shen [36,38] showed this equivalence between
separation and singularity formation. We refer to the introduction of [5] for an
historic perspective for criteria for steady and unsteady separation.

It is noted in [36] that the layer becomes inviscid to leading order during sepa-
ration. This justifies our study of the inviscid Prandtl system (1.1). The aim of this
article is to give a rather complete study of (1.1). In particular, we justify in a math-
ematical and rigorous way the aforementioned results: we prove the equivalence
between separation and singularities for (1.1), and describe the generic mechanism
for this phenomenon.

This introduction will now be restricted to unsteady problems.
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1.1.2. Existence and Regularity of Solutions The first rigorous mathematical
justification of the unsteady Prandtl system is due to Oleinik [28]; she proves the
local wellposedness by imposing a monotonicity in y condition on the tangential
velocity u in order to use the Crocco transform. Xin and Zhang [39] obtain global
existence of weak solutions by imposing monotonicity and an extra condition on
the pressure. The monotonicity condition allows Masmoudi and Wong in [26], and
Alexandre,Wang, Xu andYang in [2] to prove wellposedness in Sobolev regularity.
Without the monotocity condition, the equation can be ill-posed in Sobolev regu-
larity [16]. Indeed, the authors in [18,20] constructed instabilities that can prevent
the Prandtl system to be a good approximation of the Navier–Stokes system in the
vanishing viscosity limit. We refer to [15,25,31] and the references therein for fur-
ther informations. Otherwise, in the general case the system is locally well-posed
in the analytical setting [11,22,24,32].

To the best of our knowledge, the only local existence with general smooth
initial data for the inviscid Prandlt system (1.1) is due to Hong and Hunter, in
[21] (see also [3,19]). They find a lower bound for the maximal time of existence
which corresponds to that of the Burger’s equation T = (− infH∂xu0)−1 in the
case of a trivial outer Eulerian flow (1.12). We find in this current paper that the
sharp maximal existence time for the homogeneous inviscid Prandtl system (1.12)
is T = −(inf{∂yu0=0}∪{y=0} ∂xu0)−1 which is larger. We prove that this time is
sharp which clarifies why the aforementioned monotonicity condition is important
to guarantee global wellposedeness for the inviscid Prandtl system.We obtain more
generally a sharpmaximal time of existence in the case of nontrivial Eulerian flows.

1.1.3. Description of Singularities The first reliable numerical result on the
unsteady Prandtl system explaining how the separation is linked to the formation
of singularity was obtained by Van Dommelen and Shen [36]. They characterise
the singularity as a result of particles being squashed in the streamwise direction,
with a compensating expansion in the normal direction of the boundary. We refer to
[10,14] for recent numerical simulations and references therein for previous ones.

The first rigorous result on singularity formation for the unsteadyPrandtl system
is due to E and Enquist [12] (see [23] for nontrivial outer flows). They consider the
trace of the tangential derivative of odd solutions in x along the transversal axis
ξ(t, y) = −ux (t, 0, y), which obeys the following equation for y ∈ [0,∞):

{
ξt − ξyy − ξ2 + (∫ y

0 ξ
)
ξy = pExx (t, 0),

ξ(t, 0) = 0, ξ(0, y) = ξ0(y), limy→∞ξ(t, y) = −uE
x (t, 0).

(1.3)

They also prove singularity formation for (1.3). In [6] we give a precise description
of the singular dynamics of the equation above, where we find a stable profile (and
instable ones) and prove that the blowup point is ejected to infinity in the transversal
direction because of the incompressibility condition. This result can be interpreted
as a partial stability result for one of the profiles studied in the present paper, see
Remark 1.6.

It is interesting to understand singularities for simplified models. In a first part
of [7], we treat the inviscid Burgers equation ut +uux = 0 and prove that the Taylor
expansion of the initial data around the blowup point will decide which profile and
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scaling law the flow will select to form the singularity. The solution will be of the
form u(t, x) = (T − t)1/(2i)�i (x/(T − t)1+1/(2i)) where (�i )i�1 are the profile,
and the Taylor expansion selects the integer i . We prove that the generic profile

�1(X) :=
⎛

⎝−X

2
+
(

1

27
+ X2

4

) 1
2

⎞

⎠

1
3

+
⎛

⎝−X

2
−
(

1

27
+ X2

4

) 1
2

⎞

⎠

1
3

, (1.4)

appears generically during blow-up. Surprisingly, the above profile is also going to
play a role in the generic separation phenomenon for the Prandlt’s system.

In order to understand the effect of the transversal viscosity on the horizontal
transport we consider in the second part of [7] a two dimensional Burgers system

ut − uyy + uux = 0 (t, x, y) ∈ [0, T ) × R
2. (1.5)

We found infinitely many different profiles, one being stable under suitable pertur-
bations. We find that despite the infinite speed of propagation induced by the trans-
verse viscosity, the Taylor expansion of the initial datum around the blowup point
will still decide the profile and the scaling law. We prove that the vertical viscosity
affects the shock formation of Burgers equation, in the sense that the solutions are
now anisotropic and of the form u(x, y, t) ∼ λ1/(1+2i)(t, y)�i (x/λ(t, y)) where
�i is a profile of the Burger’s equation and λ → 0 depends on the solutions of a
parabolic system similar to (1.3) without the nonlocal term.

Inspired by [4,8,13,36,37] where it is suggested based on numerics and for-
mal calculations that the viscosity is asymptotically negligible during singularity
formation for the unsteady Prandtl system, we treat in this paper the singularity for-
mation for the inviscid problem (1.1). In a forthcoming paper we treat the viscous
case.

1.2. Results

1.2.1. A Sharp Existence Result andEquivalence Between Separation and Sin-
gularity We give here a sharp local well-posedness result for (1.1), relying on the
Lagrangian approach initiated in [21,36]. As a by-product, we prove that the layer
separates if and only if the solution becomes singular, establishing rigorously this
standard criterion for separation in the physics literature (see for example [35]).

We denote by (X,Y ) the Lagrangian variables and (x, y) the Eulerian ones for
equation (1.1). The position at time t of a particle with initial position (X,Y ) and
that is transported by the flow, is denoted by (x(t, X,Y ), y(t, X,Y )). Using dots
for differentiation with time t , these are related by the characteristics ODE

ẋ = u(t, x, y), ẏ = v(t, x, y), (x(0), y(0)) = (X,Y ). (1.6)

Our definition of separation, meaning that the layer penetrates the outer flow (fol-
lowing Prandtl as cited in Subsubsection 1.1.1), is

Definition 1.1. Given T0 > 0, uE , pE ∈ C1([0, T0) × R) solving (1.2) and u ∈
C1([0, T0) × H) solving (1.1), we say that there is boundary layer separation at
time T0 if there exists a solution (x(t), y(t)) of (1.6) such that limt↑T0 y(t) = ∞.
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From (1.1), along the characteristics u solves the ODE u̇ = −pEx (t, x). There-
fore, the tangential position x of the particle can be retrievedwithout any knowledge
about the normal one y, by solving the followingODEfor each triple (X,Y, u0(X,Y )):

{
ẋ = u,

u̇ = −pEx (t, x),
(x(0), u(0)) = (X, u0(X,Y )). (1.7)

The above equation is that of one dimensional particle moving in a force field
−pEx . The corresponding change of variables (X,Y ) �→ (X, u) is called the Crocco
transform and has been used extensively in the study of the Prandtl system. One
key fact about (1.1) is that the vorticity uy is preserved along the characteristics,
as differentiating (1.1) with respect to y yields uyt + uuyx + vuyy = 0 because
pE does not depend on y, and using incompressibility. Hence the set {uy = 0}
is transported by the characteristics. The boundary {y = 0} is also preserved as
v|y=0 = 0. Hence for any (x, y) either in the set {uy = 0} or at the boundary
{y = 0}, one has vxuy = 0, so that differentiating (1.1) with respect to x yields
uxt + uuxx + vuxy = −(ux )2 − pExx . It follows from this equation and (1.7)
that the transport along the tangential variable and the tangential compression ux ,
when restricted to these two sets, are given by the previous ODE completed by an
inhomogeneous Riccati equation as follows

⎧
⎨

⎩

ẋ = u,

u̇ = −pEx (x),
u̇x = −(ux )2 − pExx (x),

(x, u, ux )(0) = (X, u0(X,Y ), u0x (X,Y )).

(1.8)

Given a global in time pressure field pE ∈ Ck([0,∞)×R)with k � 2, the solution
to the above system might not exist for all time due to the nonlinearity in the last
equation, and we denote by T (X,Y ) the corresponding maximal time of existence.
We will distinguish later on between singularities happening at the boundary or
away from it, and define, to this end

T := min(Ta, Tb), Ta := min{T (X,Y ), ∂Y u0(X,Y ) = 0, Y > 0},
Tb := min{T (X,Y ), Y = 0}. (1.9)

The time T defined above is a natural upper bound for the maximal existence of a
solution to (1.1) with ux ∈ L∞. In fact, this time is sharp. We introduce the spaces

L∞
loc,0([0, ∞) × R)

=
{
f, ‖ f ‖L∞([0,t]×R) < ∞ and lim

m→∞ ‖ f ‖L∞([0,t]×{|x |�m}) = 0 for all t > 0
}

,

Fk =
{
(uE , pEx ) ∈ Ck ([0, ∞) × R) solving (1.2), with (uEx , pExx ) ∈ L∞

loc,0([0, ∞) × R)
}

,

(1.10)
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for the outer flow, and the following spaces for the initial datum (depending on
uE (0)):

L∞
0 (H) =

{
f, ‖ f ‖L∞(H) < ∞ and lim

m→∞ ‖ f ‖L∞({|x |�m}×[0,∞)) = 0
}

,

Ek =
{
u0 ∈ Ck(H) with ∂yu0 ∈ L∞(H), ∂xu0 ∈ L∞

0 (H)

and lim
y→∞ ‖u0(·, y) − uE (0, ·)‖C1({|x |�m}), for all m > 0

}
. (1.11)

Theorem 1. For any (uE , pEx ) ∈ F2 and u0 ∈ E2, there exists a unique so-
lution u ∈ C1([0, T ) × H) of (1.1) where T is defined by (1.9). This satisfies
supt∈[0,T̃ ]‖∇u(t)‖L∞(H) < ∞ for any T̃ < T . If T is finite, then

lim
t↑T ‖ux (t)‖L∞(H) = ∞,

and if, moreover, T = Ta then there is boundary layer separation at time T in the
sense of Definition 1.1. If in addition u0 ∈ Ck(H) and (uE , pEx ) ∈ Ck([0,∞)×R)

for some k � 3, then u ∈ Ck−1([0, T ) × H). The mapping which to u0 assigns the
solution u is strongly continuous from Ck(H)∩ E2 into Ck−1([0, T ′]×H) for any
T ′ < T .

Remark 1.2. Boundedness of the gradient in (1.10) and (1.11) is the natural re-
quirement for classical solutions. The decay as |x | → ∞ facilitates the study of
singularities, forcing them to appear at a finite location in x , and not at infinity in
x . We use the word singularity as it is usual, but it can be misleading: the solution
might remain smooth at time T . Indeed, the points where ux becomes large can be
sent to infinity in the normal direction as the study below shows. Also, from Theo-
rem 1 and the ODE (1.8), one easily derives the following criteria for global-well
posedness or finite time blow-up:

• In the case of normal monotonicity uy > 0 or uy < 0, the solution is global if
and only if the solution to the Burgers equation at the boundary

∂t u|y=0 + u|y=0∂xu|y=0 = −pEx

is global.
• The solution is global in the case of tangential growth u0x � 0 on both the set
of zero vorticity {u0y = 0} and the boundary {y = 0}, and of concave pressure
pExx � 0.

• The maximal time of existence is T = (−min{u0y=0}∪{y=0} u0x )−1 in the pres-
sureless case pE = 0 (with the convention T = ∞ if the min is nonnegative).

Remark 1.3. For a singularity away from the wall, Ta < Tb, let (X0,Y0) be the
point attaining the minimum in the definition of Ta . Then the time dependent posi-
tion (x(t), y(t)) in Definition 1.1 can be chosen as the characteristics starting ini-
tially at (X0,Y0). One thus recovers a standard criterion for separation in the physics
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literature: theMRS conditions of Subsubsection 1.1.1 at this point (x(t), y(t)) sup-
plemented by the appearance of a Burgers type compression at this point (this
supplementary condition was found by Van Dommelen and Shen [36]).1

1.2.2. TheGenericSelf-SimilarSingularSolution Considering thenonlinearity
in the ODE (1.8), Theorem 1 and a standard convexity argument shows that given
any prescribed Eulerian flow uE and pE , there exist initial data u0 such that the
corresponding solution becomes singular in finite time. Theorem 1 also indicates
where singularities of (1.1) form: either at the boundary {y = 0}, or away from
the boundary on the set of zero vorticity {y > 0, uy = 0}. We now focus on
the description of this phenomenon. Motivated by the full original viscous Prandtl
system, where the Dirichlet boundary condition forces u|y=0 = 0, we will only
study what happens when the singularity forms away from the boundary, i.e. Ta <

Tb and Ta < ∞. The study done in this document could be adapted to the case of
a blow-up at the boundary.

We are interested first in a leading order description of the singularity. Since as
∇u becomes large, the effects of the pressure pE and of the boundary conditions
become of lower order, we start by dropping them and investigate the homogeneous
inviscid Prandtl system

{
ut + uux + vuy = 0,
ux + vy = 0, v|y=0 = 0,

(t, x, y) ∈ [0, T ) × H. (1.12)

This equation has the following invariances: if u is a solution then so is

μ

λ
ιu

(
t

λ
, ι
x − ct

μ
,
y

ν

)

+ c (1.13)

for (ι, λ, μ, ν, c) ∈ {−1, 1} × (0,∞)3 × R. Backward self-similar solutions are
special solutions living in the orbit of the initial datum under the action of a one
dimensional scaling subgroup, of the form u(t, x, y) = (T − t)α−1	(x/(T −
t)α, y/(T − t)β). We develop in this paper, in Section 3, a method to find the
admissible exponents α and β, and an explicit formula for 	. To have a solution to
(1.12) of this form is equivalent to have a solution of the stationary equation
{

(1 − α)	 + (αX+ 	)∂X	 + (βY+ ϒ)∂Y	 = 0,
∂X	 + ∂Yϒ = 0,

(X, Y) ∈ �,

(1.14)

subject to the condition limY→0ϒ = 0, on an open set � ⊂ H (which might be
different than H, see below). The above equation (1.14) is nonlinear and nonlocal.
Cassel, Smith andWalker [4] (see also [13]) give a change of variables to transform
(1.14) into a nonlinear local equation, see (iii) in Lemma 3.1 here, proving the

1 TheMRS conditions are satisfied because ofDefinition 1.1 and because ∂yu0(X0, Y0) =
0 from (1.9) so that ∂yu(t, x(t), y(t)) = 0 by conservation of vorticity. There is a Burgers
type compression because ∂xu(t, x(t), y(t)) → −∞ as t → Ta since the third equation in
(1.8) becomes singular from the definition of Ta .
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existence of solutions to (1.14) but without providing explicit formulas. We find
here a new way to solve (1.14) and show, see (ii) in Lemma 3.1, that (1.14) is
equivalent to the linear and local equation

(α − 1)a∂aX+ (1 + β)b∂bX= αX− a, (a, b) ∈ �′, (1.15)

whereX is seen as a function of the variables (a, b) given by a volume preserving
change of variables (X, Y) �→ (a, b) with a = −	. A Lagrangian interpretation
of this change of variables is given in Remark 1.5.

We obtain two important explicit solutions of Equation (1.15), with explicit
changes of variables (a, b) �→ (X, Y). Although these changes of variables appear
from a different perspective in [37,38], it seems that the authors did not link them
to solutions of (1.14). Classifying analytic solutions to (3.1), relying on (1.15), is
an interesting open problem. The first solution we obtain, the generic self-similar
profile, corresponds to α = 3/2, β = −1/4 and is the one related to the so-called
Van-Dommelen and Shen singularity [36]. The terminology “generic” is justified
in the next Subsection. We introduce (
 being the Gamma function)

p∗ := 4

9π3

(1

4

)4
. (1.16)

We describe below the generic profile 	, obtained from an explicit solution X to
(1.15) and an explicit change of variables � : (a, b) �→ (X, Y) relating (1.15) to
(1.14).

Proposition 1. (Generic self-similar profile) The mapping � : (a, b) �→ (X, Y)

given by

�(a, b)

=
⎛

⎝a+ b2 + p∗2a3,

∫ b

−∞
db̃

1 + 3�2
1

(
p∗
(
a+ p∗2a3 + b2 − b̃2

))

⎞

⎠ ,

(1.17)

where �1 and p∗ are defined by (1.4) and (1.16), satisfies the following properties:
(i) It is an analytic volume preserving diffeomorphism betweenR2 and the subset

of the upper half plane {(X, Y) ∈ H, 0 < Y< 2Y∗(X)} where

Y∗(X) =
∫ ∞

0

db̃

1 + 3�2
1 (p

∗(X− b̃2))
. (1.18)

The above curve Y∗ is analytic and satisfies

Y∗(X) = 3π

8
+ X+ c2

2
X2 + O(|X|3), as X→ 0, (1.19)

Y∗(X) = C±|X|− 1
6 + O

(
|X|− 5

6

)
as X→ ±∞, (1.20)

where c2 = − 5
(1/4)
72π5 , and C± = 2−1 p∗−2/3

∫∞
∓1(z

3 ± 1)−1/2 dz (see (3.19)
for a formula).
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(ii) The opposite of the first component of its inverse �−1 = (�−1
1 ,�−1

2 ),

	 := −�−1
1 : (X, Y) �→ −a, (1.21)

is a self-similar profile, that is, the following is a solution of (1.12) on its
support:

u(t, x, y) = (T − t)
1
2 	

(
x

(T − t)
3
2

,
y

(T − t)− 1
4

)

. (1.22)

(iii) It enjoys the symmetry 	(X, Y∗(X) + Y) = 	(X, Y∗(X) − Y) for |Y| <

Y∗(X).
(iv) The set of zero vorticity {	Y = 0} is the curve {Y = Y∗(X)}, where

	(X, Y∗
(X)) = �1(p∗X)/p∗. On this curve, ∂X	 is minimal at (0, 3π/8) with,
as (X, Y) → 0,

	

(

X,
3π

8
+ Y

)

= −X+ (X− Y)2 +
(
p∗2 + c2

)
X3

−c2X
2Y+ O(X4 + Y4). (1.23)

(v) 	 has the following behaviour near the boundary of its domain:

	(X, Y) = p∗−2Y−2 + O(|X|Y4 + Y2) for 0 < Y� Y∗(X)

(1.24)

	(X, 2Y∗(X) − Y) = p∗−2Y−2 + O(|X|Y4 + Y2) for 0 < Y� Y∗(X),

(1.25)

and the following behaviour at infinity2: for any ε > 0, for 0 < Y <

(2 − ε)Y∗(X):

	(X, Y) = |X| 13 ϕ±∞(Y|X|1/6) + O
(
|X|− 2

3 Y−2 + |X|−1(2Y∗(X) − Y)4
)

,

(1.26)

as X → ±∞, where ϕ± ∈ C∞((0, 2C±),R) is decreasing on (0,C±), in-
creasing on (C±, 2C±), withϕ±(z) ∼ p∗−2z−2 andϕ±(2C±−z) ∼ p∗−2z−2

as z → 0, and ϕ±(C±) = ∓p∗−2/3.

Remark 1.4. From the invariances (1.13) of the equation (1.12), 	 generates
the full family of generic profiles (	μ,ν,ι)(μ,ν,ι)∈(0,∞)2×{−1,1} where	μ,ν,ι(X, Y) =
μι	 (ιX/μ, Y/ν) , in that u(t, x, y) = (T − t)1/2	μ,ν,ι(x/(T − t)3/2,
y/(T − t)−1/4) also solves (1.12). The profile	μ,ν,ι is obtained from the mapping:

2 The condition Y < (2 − ε)Y∗ ensures both quantities 	(X, Y) and ϕ±∞(Y|X|1/6)
are defined. Note that on [(2 − ε)Y∗, 2Y∗) the asymptotics (1.25) prevails.
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�μ,ν,ι(a, b)

=
⎛

⎜
⎝a+ ι

μ

ν2
b2 + p∗2

μ2 a3,

∫ b

−∞
db̃

1 + 3�2
1

(
p∗
(
a
μ + p∗2

μ3 a3 + ι
ν2

b2 − ι
ν2

b̃2
))

⎞

⎟
⎠

via 	μ,ν,ι = −�−1
μ,ν,ι,1 where we wrote �−1

μ,ν,ι = (�−1
μ,ν,ι,1,�

−1
μ,ν,ι,2). There-

fore, changing the value (1.16) of p∗ in (1.17) would have defined another self-
similar profile as well. The choice of p∗ (1.16) was made to normalise the Taylor
expansion (1.23).

Remark 1.5. The variables (a, b) in (1.17) should be thought, asymptotically as
t ↑ T , as Lagrangian self-similar variables. Indeed, for the self-similar solution
u(t, x, y) = (1− t)1/2	(x/(1− t)3/2, y/(1− t)−1/4) of (1.12) with initial datum
u0(x, y) = 	(x, y), let (X,Y ) �→ (x, y) be the Lagrangian to Eulerian map
defined in Subsubsection 1.2.1, let (x, y) �→ (X, Y) = (x/(1 − t)3/2, y/(1 −
t)−1/4) be the Eulerian self-similar renormalisation, and let (X, Y) �→ (a, b) =
�−1(X, Y) be as in (1.17). Compositing these maps, we get a map (X,Y ) �→
(a, b), allowing to interpret what the (a, b) variables represent for the Lagrangian
variables (X,Y ). A computation shows that they are related through: (X,Y ) =
�((1 − t)1/2a, (1 − t)3/4b). Thus, for (a, b) = O(1), a Taylor expansion, using
Proposition 1, produces

(X,Y ) =
(

0,
3π

8

)

+ (1 − t)
1
2 a · (1, 1) + (1 − t)

3
4 b · (0, 1) + O((1 − t)).

Asymptotically as t ↑ 1, the change of variables (X,Y ) �→ (a, b) is then a
linear rescaling centred at (0, 3π/8), namely, it is asymptotically a self-similar
renormalisation centred at that point.

1.2.3. Generic singularity leading to boundary layer separation The self-
similar profile	givenbyProposition 1 is at the heart of the singularity formation for
the inviscid Prandtl equations, triggering the separation of the boundary layer. In this
paper we show the appearance of this self-similar profile from a generic set (dense,
and open, among data producing singularities) of initial data u0. This shows that
the effects of the outer Eulerian flow (uE , pE ) might alter the position and time of
appearance of the singularity, but not its structure (the profile	 and the self-similar
exponents 3/2 and −1/4), and hence are of lower order. The generic singularity
is a consequence of a tangential generic Burgers-type compression occurring on a
line of zero vorticity, and induces a normal expansion by volume preservation. We



Singularities and unsteady separation for the inviscid 1359

justify the following picture, which was first derived in [36,38]:

The idea behind the generic appearance of 	 is the following. A shock is
forming at a moving location (x∗, y∗) in Eulerian variables. This point corre-
sponds in Lagrangian variables to a point (X0,Y0), at which the characteristics
map (X,Y ) �→ (x, y) becomes critical (i.e., the Jacobian vanishes) at blow-up
time. Generically, the characteristics map will satisfy certain properties at this lo-
cation, see Section 4, ensuring that the following holds true. Around that point, there
exist self-similar Lagrangian variables (a, b) (see (5.2) for a precise definition) such
that for appropriate self-similar Eulerian variables (X, Y) the renormalised char-
acteristics map becomes asymptotically time independent as t ↑ T , and converges
to �.

Lagrangian (X, Y ) Eulerian (x, y)

Self-similar Lagrangian (a, b) Self-similar Eulerian (X, Y)

characteristics

renormalised characteristics
−→ � as t ↑ T

Finding a solution to the transport equation (1.12) is equivalent to finding the
characteristics. Thus, this knowledge of an asymptotic equivalent for the charac-
teristics map, allows one to show the existence of an asymptotic equivalent for u: it
is close to a rescaling of the self-similar profile 	. Said differently, solutions of the
inviscid Prandtl equations become asymptotically self-similar during singularity
formation, because the characteristics become asymptotically self-similar.

The profile 	 cannot be an approximation of u away from the singularity; the
support of	 is finite, and there are two singular zoneswithin its support, at infinity in
space in the tangential variable (1.26), and close to the boundary (1.24)–(1.25). One
thus needs else to describe the solution in these two zones, and above the support of
	. We show that below the separating structure, u reconnects to a regular profile ( f
in the Theorem below and the picture above). Above the singularity, u reconnects
to a less singular profile as well, but that undergoes a strong vertical motion created
by the singularity underneath it (g in the Theorem and picture).
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We denote by dCk
loc

the standard3 Ck
loc distance for functions on H that are k

times continuously differentiable, and equip Ek with the topology associated to the
distance

dEk (u0, u
′
0) = dCk

loc
(u0, u

′
0) + ‖∇(u0 − u′

0)‖L∞(H).

We define Y∗
μ,ν,ι(X) = νY∗(ιX/μ).

Theorem 2. (Generic Separation) Let (pEx , uE ) ∈ F4. In the subset of E4 of initial
data u0 such that T < ∞ and T < Tb, there exists a dense open set for which the
corresponding solution satisfies the following. There exist parameters (μ, ν, ι) ∈
(0,∞)2 × {−1, 1} and two constants κ,C > 0 such that

• Location of the singularity. There exists x∗ ∈ C4([0, T ],R), regular up to time
T such that ∇u(t) remains bounded in {(x, y, t), 0 � t � T, |x − x∗(t)| � ε}
for any ε > 0.

• Displacement line. There exists y∗ ∈ C3([0, T ) × R) for which the properties
below hold true, with:

y∗(t, x) = 2

(T − t)
1
4

Y∗
μ,ν,ι

(
x − x∗

(T − t)
3
2

)

(
1 + O

(
(1 − t)κ + |x − x∗(t)|κ)) . (1.27)

• Self-similarity. Let η(t, x, y) = (
(T − t)κ + |x − x∗(t)|κ + y−κ + |y∗(t, x)

− y|−κ
)
and let u∗(t) = ∂t x∗(t). For any ε > 0, there exists ε̃ > 0 such that

for |x − x∗| � ε̃ and y � (1 − ε)y∗(t, x):

u(t, x, y) = u∗(t) + (T − t)
1
2
(
	μ,ν,ι + ũ

)
(X, Y) ,

where X= (T − t)−3/2(x − x∗(t)), Y= (T − t)1/4y, and where ũ satisfies:

|ũ(t,X, Y)| � C

(

|X| 13 + |Y|−2 +
(
(T − t)

1
4 y∗(t, x) − Y

)−2
)

η(t, x, y) (1.28)

|∂Xũ(t,X, Y)| � C

(

|Y|4 + (1 + |X|)− 7
6

(
(T − t)

1
4 y∗(t, x) − Y

)−3
)

η(t, x, y) (1.29)

|∂Yũ(t,X, Y)| � C

(

|Y|−3 +
(
(T − t)

1
4 y∗(t, x) − Y

)−3
)

η(t, x, y). (1.30)

3 For example, dCk
loc

(u0, u
′
0) = ∑k

l=0
∑∞

n=1 2
−n min(‖∇l (u0 − u′

0)‖L∞(Kn), 1) with

Kn = {(x, y) ∈ H, |x | � n and |y| � n}. Another choice for the covering of compact sets
(Kn)n would yield an equivalent distance.
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• Close to the displacement line. Given any K , ε > 0, there exists ε̃ > 0 such
that for (1 − ε)y∗(t, x) � y � y∗(t, x) − K and |x − x∗| � ε̃,

u(t, x, y) = u∗(t) + μν2

p∗2(y − y∗(t, x))2
+ ṽ(t, x, y), (1.31)

where, for η̃(t, x, y) = ((T − t)κ + |x − x∗|κ + (y∗ − y)−κ + (|y∗ − y|/y∗)κ
)
,

|ṽ| � C η̃(t, x, y)

|y − y∗(t, x)|2 , |∂x ṽ| � C η̃(t, x, y)
(
(T − t)

3
2 + |x |

) 7
6 |y − y∗(t, x)|3

,

|∂y ṽ| � C η̃(t, x, y)

|y − y∗(t, x)|3 . (1.32)

• Reconnections below and above. There exist two functions f ∈ C3([0,∞),R)

and g ∈ C3(R,R) depending on u0, uE and pE with

f (y) − u∗ ∼
y→∞

μν2

p∗2 y
−2, g(y) − u∗ ∼

y→−∞
μν2

p∗2 y
−2,

g(y) →
y→∞ uE (T, x∗(T )), (1.33)

such that, for any K > 0, as (t, x) → (T, x∗(T )),

u(t, x, y) → f (y) uniformly for y � K , (1.34)

u(t, x, y) → g(y − y∗(t, x)) uniformly for y∗(t, x) − K � y.

(1.35)

Let us make the following comments on the results of Theorem 2:
1. The set considered in the above Theorem is nonempty. Indeed, given any outer
Eulerian flow (uE , pE ), there exist solutions blowing up outside the boundary, as
negative enough initial data for the third equation in (1.8) will tend to −∞ in finite
time. However, the structure for unsteady separation described in this Theorem
is not the only one occurring, and degenerate instable singularities also exist; see
Proposition 2.
2.The estimates for the error in (1.28), (1.29), (1.30) and (1.32) should be interpreted
as follows. The first term in the right hand side is the typical size of	, ∂X	 and ∂Y	

respectively. The η(t, x, y) term then quantifies a gain as T − t � 1, |x − x∗| � 1
and 1 � y � y∗. For example, for (X, Y) in a compact set K in the support
of 	μ,nu,ι, these estimates imply ‖ũ‖C1(K) = O((T − t)C(κ)) → 0. We have to
distinguish between below the displacement line and near it as in this latter region
the solution is close to a displaced version of 	. The identities (1.31) and (1.32)
indeed show the solution is close to the asymptotic expansion (1.24) of 	 near the
top part of its support, but with y∗ replacing 2Y∗. From the asymptotic behaviour
of	 in Proposition 1, ũ is of lower order compared to	 precisely in a size one zone
in x around x∗, and up to a size one distance to the boundary and the displacement
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curve. These estimates are then sharp since they precisely fail when the solution
reconnect to another nonsingular behaviour.
3. Note that the asymptotic behaviour of 	 and that of the reconnection functions
f and g, in (1.34) and (1.35) respectively, are compatible from Proposition (1.24)–
(1.25).
4. This convergence result also holds for higher order derivatives, which is a direct
consequence of the proof of the Theorem. In particular theweighted estimates adapt
naturally.

1.2.4. A Self-Similar Profile with Symmetry Other degenerate singular be-
haviours are also possible. The degeneracy can come from two distinct aspects: at
the singular point, the set of zero vorticity can locally not be a line (for example
the intersection of two lines), and the tangential compression can be induced by a
degenerate shock formation for Burgers. There exist a large range of self-similar
profiles corresponding to these (infinitely many) degenerate cases. Their properties
can also be studied with the same strategy used in the proof of Proposition 1, and
their stability similarly as in Theorem 2. As a particular interesting example, we
study in this paper one of the least degenerate cases, corresponding to a Burgers
generic shock happening at the crossing of two lines of zero vorticity. A particular
self-similar profile corresponding to this case enjoys remarkable properties: it is
odd in x , admits an analytic expansion beyond its support, and explicit formulas can
be obtained on the vertical axis. In a forthcoming paper we shall show its stability
for the full Prandtl system. The prime ’ notation below is not a differential, it is
simply to distinguish from Proposition 1.

Proposition 2. (Degenerate symmetric profile)Themapping�′ : (a, b) �→ (X, Y)

defined by

�′(a, b) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a+ a3 + b2a

4
, 2
∫ b

2

−∞
db̃

(
1 + b̃2

)
(

1 + 3�2
1

(
a+a3+ b2a

4(
1+b̃2

)3/2

))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(1.36)

where �1 is defined by (1.4), satisfies the following properties:

(i) It is an analytic volume preserving diffeomorphism between R2 and the subset
of the upper half plane {0 < Y< 2Y

′∗(X)}, where

Y
′∗(X) =

∫ ∞

−∞
db̃

(
1 + b̃2

)
(

1 + 3�2
1

(

X
(
1+b̃2

)3/2

)) (1.37)
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is an analytic curve with asymptotic expansion (with B the Euler integral of the
first kind)

Y
′∗(X) =

X→0
π − 15

16
πX2 + O(X4),

Y
′∗(X) =

X→±∞
B
( 1
6 ,

1
2

)

3
|X|− 1

3 + O(|X|−1). (1.38)

(ii) The opposite of the first component of its inverse, extended by 0 on the upper
half-space,

	′(X, Y) =
{

−�
′−1
1 (X, Y) = a if 0 < Y< 2Y

′∗(X),

0 if Y= 0 or 2Y
′∗(X) � Y,

(1.39)

is a self-similar profile. Namely, the following is a solution of (1.12):

u(t, x, y) = (T − t)
1
2 	′

(
x

(T − t)
3
2

,
y

(T − t)− 1
2

)

(1.40)

(iii) it holds that 	′ ∈ C1(H). Moreover, 	′, restricted to the set {0 � Y �
2Y

′∗(X)} is analytic, including at the boundaries {Y= 0}∪ {Y= 2Y
′∗(X)}.

The following extension 4:

	
′
(X, Y) := 	′(X, Ymod 2Y

′∗(X)) (1.41)

is analytic on the whole upper half space, and is also a self-similar profile, in

the sense that u(t, x, y) = (T −t)1/2	
′
(x/(T −t)

3
2 , y/(T −t)− 1

2 ) is a solution
of (1.12).

(iv) 	′ is odd in X, and satisfies 	′(X, Y
′∗(X) + Y) = 	′(X, Y

′∗(X) − Y) for
all |Y| < Y

′∗(X). 	′ is positive on the set {X< 0, 0 < Y< 2Y
′∗(X)} and

negative on {X> 0, 0 < Y< 2Y
′∗(X)}.

(v) The set S = {∂Y	′ = 0} is equal to S1 ∪ S2 where S1 = {X = 0} ∪ {Y =
Y

′∗(X)} on which 	′(X, Y
′∗(X)) = �1(X), and S2 = {Y = 0} ∪ {Y �

2Y
′∗(X)}. The minimum of ∂X	′ on the set S is attained at (0, π) where one

has the expansion

	′(X, π + Y) = −X+ X3 + Y2

4
X+ O(|X|5 + |Y|4|X|)

as (X, Y) → (0, 0). (1.42)

(vi) The trace of the first order tangential derivative on the vertical axis is given
by:

∂X	′(0, Y) = − sin2
(
Y

2

)

10�Y�2π . (1.43)

4 Where for z � 0 and z′ > 0, we write z = kz′ + z mod z′, k ∈ N, 0 � z mod z′ < z′.
At each fixed X, this is a periodic extension along Ywith period 2Y

′∗(X).
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(vii) The trace of the third order derivative on the vertical axis is given by:

∂3X	′(0,Y )

= 1

576

⎡

⎣
96 sin8

(
Y
2

)

cos2
(
Y
2

)
+ 1

6

− sin(Y)

⎛

⎝270Y− 80 sin(Y) + 3 sin(2Y) − 686 sin(Y)

3 cos2
(
Y
2

)
+ 1

2

⎞

⎠

⎤

⎦

10�Y�2π .

The above function is positive on (0, 2π). It admits the expansions as Y→ 0:

∂3X	′(0, Y) = cY8+O(Y10), ∂3X	′(0, 2π−Y) = c′Y+O(Y2), c, c′ > 0.

Remark 1.6. • Note the difference in the scaling exponents when comparing
(1.40) with the generic profile (1.22). The above degenerate profile yields a
slower expansion along the normal direction.

• In [6], we show that there is a stable blow-up pattern for equation 1.3, for which
solutions converge to (T − t)−1 sin2

(
y/(ν2(T − t)−1/2)

)
10�y�ν2π(T−t)−1/2 .

This partially shows that the profile of Proposition 2 is the stable attractor for
solutions that are odd in x when the singularity is located on the transversal
axis.

1.3. Ideas of the Proofs and Organisation of the Paper

The proof of the local well-posedness result in Theorem 1 for regular initial data
relies on a careful study of the characteristics (1.6) and of the ODEs for tangential
displacement (1.7) underlying them, which then permits to retrieve the normal
displacement by volume preservation (Lemma A.1). The sharp expression we find
for the maximal time of existence is a consequence of two volume preserving
dynamics: that of the characteristics map from Lagrangian to Eulerian variables,
and that of the ODE for tangential displacement (1.7) in the (x, u) phase space.

In the study of the self-similar profiles, the transformation of (1.14) into (1.15)
uses a modified Crocco transform relying on the fact that the vector field in (1.14)
has constant divergence. The solutions (1.17) and (1.36) are found by solving (1.15),
and all the properties of the profiles can be obtained from computations on these
explicit formulas.

To obtain the generic appearance of the generic self-similar profile during sep-
aration/singularity formation, we first define (Definition 4.1) a condition for the
characteristics at their first critical point at time T . This condition is stable under
perturbations, by standard ODE stability arguments. Using a control argument, we
moreover show an initial datum u0 leading to blow-up can always be perturbed to
ensure this condition is met at time T . Roughly speaking, this means that the map
u0 �→ u(T ) is invertible, which relies on the fact that (1.7) is volume preserving in
the (x, u) phase space. We then reconstruct the solution around the point at which
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the shock is forming using the characteristics map. We prove this map, since sat-
isfying the aforementioned condition, after suitable self-similar renormalisations
both in Lagrangian and Eulerian variables, converge to � defined by (1.17). We
invert the characteristics, by a uniform application of the local inversion Theorem
for (x, y) ∈ [x∗−ε, x∗+ε]×[0,∞), and show it is close to�−1 in the self-similar
zone. This part is lengthy and technical since, as the characteristics map becomes
degenerate and has distinct asymptotic behaviours in various zones, each requiring
a specific treatment, and since we track precisely all error terms to obtain an opti-
mal picture (in an Eulerian zone of optimal O(1) × [0,∞) size). The solution u is
then retrieved from the characteristics, and explicit computations end the proof of
Theorem 2.

The paper is Section 2 is devoted to the proof of Theorem 1, showing local
existence of solutions and computing the maximal time of existence. Self-similar
profiles are studied in Section 3. Subsection 3.1 transforms the self-similar profile
equation (1.14) into the linear and local equation (1.15). The generic profile is
studied in Subsection 3.2 where Proposition 1 is proved, the degenerate one in
Subsection 3.3where Proposition 2 is proved. The rest of the article is devoted to the
proof of Theorem 2. The Definition 4.1 of generic singularity for the characteristics
is given in Subsection 4 where it is proved to hold generically. Section 5 then
establishes the conclusions of Theorem 2 for solutions satisfying this condition.
Appendix A shows how to retrieve one component of a 2-d volume preserving map
from the other, and Appendix B contains computations for the characteristics used
in the proof of Theorem 2.

Notations

We write x � y if there exists a constant C > 0 independent of the context
such that x � Cy. We write x ≈ y if x � y and y � x . We use Lagrangian
variables (X,Y ) and Eulerian variables (x, y). As they are equal at the initial time,
we might use one notation or the other in several places, but in this context only.
We use the notations ∂x , ∂/∂x or the subscript ·x to indicate partial differentiation.
In some contexts, we write ∂ f

∂x |y to indicate partial differentiation with respect to x
with the variable y being kept fixed.

2. Local Well-Posedness and Time of Existence

This section is devoted to the proof of Theorem 1. We establish here local-
existence of solutions to the inviscid Prandtl system (1.1), prove that T given by
(1.9) is the maximal time of existence, and that separation occurs if T is finite.

Proof of Theorem 1. The proof relies on the special structure of the characteristics
and uses the Crocco transformation. The existence follows from their nondegener-
acy until time T , while the regularity follows from standard regularity theory for
level sets of functions.We denote by∇ = (∂X , ∂Y ) the nabla operator in Lagrangian
variables.
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Step 1 Existence. We aim at establishing the existence and a formula for the char-
acteristics, φ[t] : (X,Y ) �→ (x, y) with φ = (φ1, φ2). We first solve, for the
tangential displacement,

x(t, X,Y ) = φ1[t](X,Y ), (2.1)

where x above is the solution of (1.7). Notice that (1.7) can always be solved
globally in time, so that x(t, X,Y ) is well-defined for all (t, X,Y ) ∈ R+ × H. We
next study the level sets x = Cte in Lagrangian variables. Let us show first that
they are non-degenerate, in that ∇x �= 0.

In the first case, we assume that (X0,Y0) is such that u0Y (X0,Y0) �= 0. We
then claim that ∇x(t, X0,Y0) �= 0 for any t > 0, as obtained from the following
diagram that we explain below.

(X, Y )

(X, u0(X, Y )) (x(t, X, Y ), u(t, X, Y ))

di f f eomorphism
di f f eomorphism

volume
preserving

Indeed, theCrocco transformation (X,Y ) �→ (X, u0(X,Y )) is in this case awell de-
fined local diffeomorphismnear (X0,Y0). Thevectorfield (x, u) �→ (u,−pEx (t, x))
in the ODE (1.7) is divergence free in the (x, u) phase space. Hence, the mapping
(x, u) �→ (x(t), u(t)) is volume preserving in the (x, u) phase space, hence a
diffeomorphism. By composition, (X,Y ) �→ (x(t, X,Y ), u(t, X,Y )) is a local
diffeomorphism near (X0,Y0) implying that ∇x(t, X0,Y0) �= 0.

In the second case, we assume that u0Y (X0,Y0) = 0 or Y0 = 0. The couple
(x, u) solves (1.7), so that, in particular,

∂t (∂X x) = ∂Xu, implying ∂t t (∂X x) = ∂X (−pEx (t, x)) = −(∂X x)p
E
xx (t, x).

This shows that at each fixed (X,Y ), as long as ∂X x does not vanish,

d

dt

(
∂t∂X x

∂X x

)

= −
(

∂t∂X x

∂X x

)2

− pExx (t, x),
∂t∂X x

∂X x
(0) = ∂Xu0.

At the point (X0,Y0), the quantity ∂t∂X x/∂X x is precisely the third component of
the ODE system (1.8). Because of the definition of T (1.9), the solution to the above
differential equation iswell defined for t < T . Hence ∂t log(∂X x) is well-defined for
t < T , implying ∂X x(t, X0,Y0) > 0 after integration. Hence, ∇x(t, X0,Y0) �= 0
for t < T in this second case as well.

We just showed that ∇x �= 0 everywhere on R+ × R, as long as t < T .
Hence, in Lagrangian variables, the level sets x = Cte are non-degenerate. At
the boundary, as showed in the second case above: ∂X x|Y=0 �= 0. Therefore, the
upper half plane is foliated by curves corresponding to the level sets 
[t, x] =
{(X,Y ) such that x(t, X,Y ) = x}. Since u0, uE , pEx areC2, solving the ODE (1.7)
produces a solution map that is also of class C2, and x(t, X,Y ) is a C2 function.
Hence the curves 
[t, x] are C2. We then define an arclength parametrisation s for
each of these curves, 
[t, x] = {γ [t, x](s), s � 0}where s = 0 corresponds to the
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point at the boundary Y = 0. Denoting by XE �→ x E the Lagrangian to Eulerian
map of the Bernouilli equation (1.2) (with ẋ E = uE (t, x E ) and x E (0, XE ) = XE )
then there holds γ [t, x](s) → XE (t, x) as s → ∞.

We now apply (i) in Lemma A.1. Since x = φ1[t] is non-degenerate in that
∇φ1[t] �= 0, and that γ is an arclength parametrisation its level curves, then the
second component of the characteristics y = φ2[t] is such that φ2[t] = 0 at the
boundary and φ[t] = (φ1[t], φ2[t]) is volume preserving if and only if

y(t, X,Y ) = φ2[t](X,Y ) =
∫ s[t,x](X,Y )

0

ds̃

|∇φ1[t](γ [t, x](s̃))| . (2.2)

Note that before T , the denominator in the above integral is uniformly away from
0. The function y above is of class C1 because γ , s and ∇φ1 are. The mapping
(t, X,Y ) �→ (t, x, y) is thus a C1 diffeomorphism from [0, T )×Honto itself. We
finally define the solution as u(t, x, y) = u(t, X,Y ) where the right hand side is
the solution to (1.7) (abusing notations). Clearly,

∂x

∂t |X,Y
= u0(X,Y ) = u(t, x, y).

Since the mapping (X,Y ) �→ (x, y) is C1 and preserves the measure, ∂x ∂x
∂t |X,Y +

∂y
∂y
∂t |X,Y = 0, yielding

∂y

∂t |X,Y
= −

∫ y

0
∂xu(t, x, ỹ)d ỹ.

Since ∂t u(t, x(t), y(t)) = −pEx (x(t)) and u is C1, one deduces that u solves the
inviscid Prandtl equations. Note that the matching condition at infinity in (1.1) are
indeed satisfied for the following reason. Initially as y → ∞, u0 → uE

0 . u
E solves

the Bernouilli equation (1.2) that has a global solution, and whose characteristics
correspond to the tangential displacement (1.7) of the characteristics for u. This
gives the desired compatibility.
Step 2 Regularity. Assume u0 ∈ Ck . The formula (2.1) for x(t, X,Y ) defines a Ck

function since x is obtained as the solution of the ODE (1.7) with a Ck vector field.
In the formula (2.2), ∇φ1[t] is Ck−1, and s and γ come from the parametrisation
of the level sets of a Ck function, hence are also Ck . Therefore, u is of class Ck−1.
The continuity of the flow follows from similar arguments.
Step 3 Uniqueness. If u is a C2 solution then uniqueness is straightforward as the
characteristics arewell defined and have to produce the diffeomorphism constructed
above from the uniqueness property (i) in Lemma A.1. In the case where u ∈ C1

only, let us detail how the normal component of the characteristics and the volume
preservation can be obtained. Define the characteristics (x(t), y(t)) through

∂x

∂t
= u(t, x, y), x(0) = X,

∂y

∂t
= −

∫ y(t)

0
ux (t, x, y), y(0) = Y.

One can indeed solve the second equation because the function
∫ y
0 ux (t, x, y) is

C1 in the third variable. One obtains characteristics (x, y) such that x is C1 in
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(X,Y ) and y is only C1 in t and continuous in the other variables. u then solves
u̇ = −pEx (x) along the characteristics, implying that x is given by the formula
(2.1). Moreover, since x is aC1 function, and y is aC1 function in t , with ∂t y being
C1 in y, such that ∂y(∂t y(t)) = −∂x (∂t (x(t))), an approximation argument using
a regularisation procedure gives that the characteristics must preserve volume. The
mapping (X,Y ) �→ (x, y) is then a bijection preserving volume with x ∈ C1 and
y continuous, which can be showed to be necessarily of the form described in Step
1.
Step 4 Blow-up and separation. Assume that T < ∞. Then by definition of T
one solution to the ODEs (1.8) must blow up at time T , which is only possible
if ux → −∞ as t → T . If moreover T = Ta , then from Step 1, there exists a
point (X0,Y0) ∈ H with Y0 > 0, such that ∇x(t, X0,Y0) → 0 as t ↑ T . Set
(xs(t), ys(t)) = (x(t, X0,Y0), y(t, X0,Y0)). Then xs is a regular up to T solution
to (1.7) and has a finite limit x0 as t ↑ T , and limt↑T ys = ∞ from (2.2) and
the vanishing of ∇x . Hence there is boundary layer separation in the sense of
Definition 1.1. ��

3. Construction of Self-Similar Profiles

3.1. The Equation for Self-Similar Profiles

We study self-similar profiles 	 such that u(t, x, y) = (T − t)α−1	(x/(T −
t)α, y/(T − t)β), for some α, β ∈ R, solves (1.12). Dropping the boundary condi-
tion for the normal velocity, this amounts to solving the stationary equation

{
(1 − α)	 + (αX+ 	)∂X	 + (βY+ ϒ)∂Y	 = 0,
∂X	 + ∂Yϒ = 0.

(3.1)

A first method, due to Cassel, Smith and Walker [4] (see also [13]) transforms
the nonlinear nonlocal equation (3.1) into a nonlinear local equation (3.3). It relies
on the Crocco change of variables (X, Y) �→ (X,	). We find a new change
of variables that transforms (3.1) into the linear and local equation (3.2). This
change of variable can be thought of as a volume preserving Crocco transform, and
the variables (a, b) should be thought of as Lagrangian self-similar variables as
explained in Remark 1.5. We include the proof of (iii) for the sake of completeness.

We use statement (ii) to find explicit solutions to (3.1).While (iii) is not useful to
solve (3.1) explicitly, the knowledge of the solution to (3.3), i.e. ∂Y	 as a function
of X and 	, is useful for certain computations. We mention that the classification
of analytic solutions to (3.1), relying on (3.2), is an interesting open problem.

Lemma 3.1. Let α, β ∈ R, α �= 1, � ⊂ H open, 	 ∈ C3(�), a = −	 and
assume 	 �= 0 on �. Then the following statements are equivalent:

(i) There exists ϒ ∈ C1(�) such that (	,ϒ) solves (3.1). One has ∇	 �= 0 on �

and for each q in the range of 	 the level set 
q = {(X, Y) ∈ �, 	(X, Y) =
q} is diffeomorphic to R.
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(ii) There exists b ∈ C2(�) such that the mapping (X, Y) �→ (a, b) is a volume
preserving diffeomorphism between � and an open set �′ ⊂ R

2, and, writing
X(a, b) as a function on �′, it satisfies

(α − 1)a∂aX+ (1 + β)b∂bX= αX− a. (3.2)

One has that for every a ∈ R, the set {b ∈ R, (a, b) ∈ �′} is either an
interval or empty.

If, moreover, ∂Y	 �= 0 on � these statements are equivalent to the following one:

(iii) The change of variables (X, Y) �→ (X,	) maps � onto an open set �′′.
Writing τ(X,	) as a function on �′′, that satisfies

(α − 1)	
∂

∂	 |X
τ + (αX+ 	)

∂

∂X|	
τ = (α − 1 − β)τ. (3.3)

One has that for every q in the range of 	, the set {X ∈ R, (X, q) ∈ �′′} is
an interval.

Remark 3.2. The hypothesis 	 �= 0 is not necessary. The implications between
(i), (ii), (iii) would hold, provided additional regularity assumptions near the set
{	 = 0}, see the proof.

The hypothesis ∇	 �= 0 is necessary for (ii). For a solution to (3.1), there
should be a different change of variables (X, Y) �→ (aC, bC) for each connected
component Cof the set {∇	 �= 0}. For example, for 	

′
defined by (1.41), for each

component Cn = {2(n − 1)Y
′∗(X) < Y< 2nY

′∗(X)}, a change of variables for
(ii) is given by (X, Y) �→ (aCn , bCn ) with (aCn , bCn ) = �

′−1(X, Y− 2(n −
1)Y

′∗(X)), where �′ is given by (1.36).
The assumption ∂Y	 �= 0 is necessary for (iii). For a solution to (3.1), there

should be a different change of variables (X, Y) �→ (X,	) for each connected
component C of the set {∂Y	 �= 0}. For 	 given by (1), there is a different change
of variables on {0 < Y < Y∗(X)} and {0 < Y < Y∗(X)}, yielding different
solutions to (3.3), see Lemma 3.3.

Proof. Step 1 (i) implies (ii). Assume (i) and let v = (αX+	)∂X+ (βY+ϒ)∂Y
and write v. f = (αX+ 	)∂X f + (βY+ V)∂Y f to denote the differentiation
along v on �. Then, the second equation in (3.1) implies, with ∇X,Y. denoting the
divergence in (X, Y) variables, that

∇X,Y.v = α + β. (3.4)

Assumefirst that� is connected.As	 isC3 with∇	 �= 0, and given the hypothesis
on its level sets, we use one of the formulas provided by Lemma A.1 and get
the existence of b ∈ C2(�) such that the mapping φ : (X, Y) �→ (a, b) is a
C2 volume preserving diffeomorphism onto some open set �′ ⊂ R

2. Let v′ =
g(a, b)∂a + h(a, b)∂b denote the push forward of v from � to �′, that is, the
vector field such that for any f ∈ C1(�′), v′. f = v.( f ◦ φ).
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Since φ is C2 and v is C1, one has that v′ is C1, that is, g and h are C1. The
first equation in (3.1) gives v.	 = (α − 1)	, so that v′.a = (α − 1)a, and we get

g(a, b) = (α − 1)a, (3.5)

so g is in fact smooth. As φ is C2 and preserves volume, we get conservation of
divergence so that: ∇a,b.v′ = ∇X,Y.v = α + β where we used (3.4). This gives,
using (3.5),

∂bh = 1 + β. (3.6)

Consequently, there existsϕ(a) aC1 function such thath(a, b) = (1+β)b+ϕ(a).
We change variables and set b̃(a, b) = b + ξ(a) for ξ a C1 function to be
determined. Let us denote by v′′ the pushforward of v′ by (a, b) �→ (a, b̃), so that

v′′ = (α −1)a
∂

∂a|b
+ ((1+β)b̃+ (α −1)aξ ′(a)− (1+β)ξ(a)+ϕ(a))

∂

∂ b̃ |a
.

Since a �= 0 on �′ because 	 �= 0 on �, since ϕ is C1 and α �= 1, there
exists ξ a C2 solution of (α − 1)aξ ′(a) − (1 + β)ξ(a) + ϕ(a) = 0, producing
v′′ = (α−1)a∂a+(1+β)b̃∂b̃. Note that the change of variables (a, b) �→ (a, b)

is C1 and volume preserving. Therefore, up to relabelling b̃ as b, we can always
choose b such that

h(a, b) = (1 + β)b. (3.7)

Hence v′ = (α − 1)a∂a + (1 + β)b∂b by (3.5) and (3.7). Since v.X= αX+ 	,
we get that v′.X= αX− a, which is shows (3.2). Due to the assumptions on the
level sets of 	, for each a, the set {b ∈ R, (a, b) ∈ �′} is either an interval or
empty. Hence (ii) is established.

In case � is not connected, we partition it into connected components � =
∪n�n , and denote by bn ∈ C1(�n) the function we just obtained and �′

n =
(a, bn)(�n). From the properties of the level sets of	, asa = −	,�′

n ∩�′
n′ = ∅

whenever n �= n′. Hence, the function b(X, Y) = ∑
n δ(X,Y)∈�nbn(X, Y) and

�′ = ∪n�
′
n give (ii) in that case.

Step 2 (ii) implies (i). Assume (ii) and let v′ = (α − 1)a∂a + (1 + β)b∂b. Let
the pullback of the vector field v = i(X, Y)∂X + j (X, Y)∂Y by the mapping
(X, Y) �→ (a, b) be v′. Then:

i(X, Y) = αX+ 	. (3.8)

because of (3.2). Exploiting as in Step 1 the preservation of divergence by the
mapping (a, b) �→ (X, Y), we get that j isC1 with ∂Xi +∂Y j = α+β. Injecting
(3.8) yields ∂Y j = β−∂X	. Hence there existsϒ ∈ C0 continuously differentiable
with respect to Y such that

j (X, Y) = βY+ ϒ(X, Y), with ∂X	 + ∂Yϒ = 0. (3.9)

The definition of v′ gives v′.a = (α −1)a, which, combined with a = −	, (3.8)
and (3.9) shows that (3.1) is satisfied. As (X, Y) �→ (a, b) preserves volume and
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a = −	, we get ∇a �= 0 on �. For q in the range of 	, the identity {(X, Y) ∈
�, 	(X, Y) = q} = (X, Y)({(q, b) ∈ �′}), and the fact that {(q, b) ∈ �′}
is a non-empty interval, imply that this set is diffeomorphic to R. Hence (i) is
established.
Step 3 (ii) implies (iii). Assume (ii) and that ∂Y	 �= 0 on �. The mapping
(X, Y) �→ (a, b) is a C1 volume preserving diffeomorphism, hence the deter-
minant of the Jacobian matrices is either −1 or 1. Up to changing b into −b, we
assume that it is 1, so that

⎛

⎝

∂Y
∂b − ∂X

∂b

− ∂Y
∂a

∂X
∂a

⎞

⎠ =
( ∂a

∂X
∂a
∂Y

∂b
∂X

∂b
∂Y

)

. (3.10)

In particular, using a = −	, we get τ = ∂bX. Plugging this identity in (3.2), then
differentiating with respect to b yields

(α − 1)a∂aτ + (1 + β)b∂bτ = (α − 1 − β)τ. (3.11)

The change of variables (a, b) �→ (a,X) produces

∂

∂a|b
τ = ∂

∂a|X
τ + ∂

∂a|b
X

∂

∂X|a
τ,

∂

∂b |a
τ = ∂

∂b
X

∂

∂X|a
τ.

Injecting the above identities in (3.11) gives

(α−1)a
∂

∂a |X
τ+
(

(α − 1)a
∂

∂a|b
X+ (1 + β)b

∂

∂b |a
X

)
∂

∂X|a
τ = (α−1−β)τ.

Above, (α − 1)a ∂
∂a |bX+ (1 + β)b ∂

∂b |aX= αX− a from (3.2), which proves
(3.3) since a = −	. Since the statement (i) is satisfied from Step 2, for each q in
the range of 	, the set {(X, Y) ∈ �, 	(X, Y) = q} is diffeomorphic to R. This
set being diffeomorphic to {(X, q) ∈ �′′}, this latter set is diffeomorphic to R, and
(iii) is established.
Step 4 (iii) implies (ii). Assume (iii) and ∂Y	 �= 0 on �. For q in the range of
	, the set {(X, Y) ∈ �, 	(X, Y) = q} is diffeomorphic to the nonempty open
interval {X∈ R, (X, q) ∈ �′′}, hence is diffeomorphic to R. As in the beginning
of Step 1, there then exists a function b ∈ C2(�) be such that (X, Y) �→ (a, b) is
volume preserving, with determinant 1. Change variables (X,	) �→ (a, b). Then,
as a = −	, using (3.10) and the definition of τ (recall τ �= 0), we get

∂

∂	 |X
= ∂a

∂	 |X
∂

∂a|b
+ ∂b

∂	 |X
∂

∂b |a
= − ∂

∂a|b
+ ∂b

∂Y|X
∂Y

∂	 |X
∂

∂b |a

= −∂a + ∂aX

τ
∂b,

∂

∂X|	
= ∂a

∂X|	
∂

∂a|b
+ ∂b

∂X|	
∂

∂b |a
= ∂b

∂X|a
∂

∂b |a
= 1

∂X
∂b |a

∂

∂b |a
= 1

τ
∂b,
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where in the last terms, and from now on, partial derivatives are taking in (a, b)

coordinates. Injecting these identities in (3.3), using that τ = ∂bXwe get

(α − 1)a∂abX+
(

(1 − α)a
∂aX

∂bX
− αX+ a

∂bX

)

∂bbX= (β + 1 − α)∂bX.

Dividing by ∂bX, the above identity yields

∂b

(

(α − 1)a
∂aX

∂bX
+ αX+ a

∂bX

)

= β + 1.

Thus, there exists a C1 function ϕ(a) such that

(α − 1)a∂aX+ αX+ a = (β + 1 + ϕ(a))∂bX.

There exists a C1 change of variables of the form b̃ = b + ξ(a) that transforms
the above equation into (3.2), by applying verbatim the same reasoning made in
Step 1. For every a ∈ R, the set {b ∈ R, (a, b) ∈ �′} is diffeomorphic to
{X ∈ R, (X, q) ∈ �′′}, hence is either empty or an interval. We have established
(ii). ��

3.2. Generic Self-Similar Profile

It is convenient to decompose the proof of Proposition 1 in two parts. The first
part is a Lagrangian approach, using formula (1.21) and certain transformations on
the Lagrangian side; some properties are directly showed out of this formula. First
we study the curve X �→ Y∗(X) and prove (i). This shows 	 is well-defined, and
allows to prove that it is a self-similar profile, which is (ii). The symmetry (iii), the
set {∂Y	 = 0} and the Taylor expansion (1.23) in (iv) can be studied directly from
the formula (1.21). Note that although this profile diverges to infinity as Y→ 0 or
2Y∗(X), it still makes sense to speak of (1.22) as a solution of Prandtl’s equations
on its support: we show that the quantity

∫ y
0 ux (t, x, ỹ)d ỹ is well defined.

To establish (v) however, we rely on different techniques. The second part
presents another approach for the study of self-similar profiles. It is an Eulerian
one since it relies on the study of the equation (3.3), following [4,13]. The study
of (3.3) can indeed complement that of (3.2).

We shall use at many locations that �1 is the inverse of the function X �→
−X− X3 (i.e. −�1(X) − �3

1 (X) = X), that it is analytic and odd, that ∂X�1
attains its minimum at 0 where ∂X�1(0) = −1 and that

u + p∗2u3 = v ⇔ u = − 1

p∗ �1
(
p∗v
)

for all (u, v) ∈ R
2, (3.12)

�1(X) = −X+ X3 + O(|X5|) as X→ 0, (3.13)

�1(X) = ∓|X| 13 ± 1

3
|X|− 1

3 + O(X−1) as X→ ±∞. (3.14)

We will write � = (�1,�2) for the components of �.
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Proof of (i) in Proposition 1. These identities are obtained through direct compu-
tations. First, the identity (3.12) implies after a direct computation that the deter-
minant of the differential of � is 1. It is thus a volume preserving diffeomorphism
onto its image.

Fixing any X ∈ R and parametrising the curve of equation �1(a, b) = a+
b2 + p∗2a3 = Xwith the variable b, we get that �2 = ∫ b

−∞(1 + 3�2
1 (p(X−

b̃2)))−1d b̃on this curve from (1.18). Recalling (1.18), the set {�2(a, b), �1 = X}
is then equal to the interval (0 < Y < 2Y∗(X)). Therefore, the image of � is
indeed the set {(X, Y), 0 < Y< 2Y∗(X)}.

We next establish (1.19). After two successive changes of variable �1(p∗(X−
b̃2))/p∗ = 	 and 	 = z + �1(p∗X)/p∗, and using (3.12), we can rewrite (1.18)
as

Y∗(X) =
∫ ∞

�1(p∗X)

p∗

d	

2
√

	 + p∗2	3 + X

=
∫ ∞

0

dz

2
√
z
√

1 + p∗2z2 + 3zp∗�1(p∗X) + 3�2
1 (p

∗X)

. (3.15)

We compute that Y∗(0) = 1
2

∫∞
0 (z + p∗2z3)−1/2 dz = 4
( 54 )

2(πp∗)− 1
2 = 3π

8 for
the specific value p = p∗ given by (1.16). Other direct computations using (3.15)
then give

∂XY∗(0) = √p∗ 3
4

∫ ∞

0

√
z dz

(1 + z2)
3
2

= 3
√
p∗

4
√

π


(3

4

)2 = 1,

∂2XY∗(0) = −3

2
p∗ 3

2

∫ ∞

0

dz
√
z(1 + z2)

3
2

+ 27

8
p∗ 3

2

∫ ∞

0

z
3
2 dz

(1 + z2)
5
2

= −
5

(
1
4

)

72π5
,

which concludes the proof of (1.19). We finish by proving (1.20). If X > 0, we
change variables in (3.15), setting z = −z̃�1(p∗X)/p∗ (note that �1(p∗X) < 0
in this case) so that

Y∗(X) = 1

2
√
p∗|�1(p∗X)| 12

∫ ∞

0

dz̃
√
z̃
√

3 + �−2
1 (p∗X) − 3z̃ + z̃2

. (3.16)

We use the asymptotic behaviour (3.14) of �1 to deduce that

Y∗(X) = C+X− 1
6 + O

(
X− 5

6

)
= C+X− 1

6 + O
(
X− 5

6

)
as X→ ∞ (3.17)

where C+ = 2−1 p∗−2/3
∫∞
−1(z

3 + 1)−1/2 dz. The same computation in the case
X→ −∞ gives

Y∗(X) = C−|X|− 1
6 + O

(
|X|− 5

6

)
as X→ −∞, (3.18)
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where C− = 2−1 p∗−2/3
∫∞
1 (z3 − 1)−1/2 dz. The constants C± can be computed

explicitly as

C+ =
3
(
3
2

) 1
3
π

5
2 

(
1
3

)

4

(
1
4

) 8
3


(
5
6

) , C− =
3
(
3
2

) 1
3
π

5
2 

(
7
6

)

2

(
1
4

) 8
3


(
2
3

) . (3.19)

This ends the proof of (1.20). ��
Proof of (ii) in Proposition 1. This is a consequence of (ii) in Lemma 3.1. Indeed,
X given by (1.17) solves (3.2) with α = 3/2 and β = −1/4 by a direct computa-
tion. Moreover, we have already proved (i) in Proposition 1, so that the mapping
(X, Y) �→ (a, b) is volume preserving. Applying Lemma 3.1, we get that, on the
set {(X, Y),	(X, Y) �= 0}, there exists ϒ such that (	,ϒ) solves (3.1). More-
over, from Step 1 in the proof of Lemma 3.1, we have that 1

2a∂a + 3
4b∂b is the

pushforward of ( 32X+	)∂X+ (− 1
4Y+ϒ)∂Y by the mapping (X, Y) �→ (a, b).

Applying these vector fields to Ygives the equality

− 1

4
Y+ ϒ = 1

2
a∂aY+ 3

4
b∂bY. (3.20)

Therefore, ϒ is analytic since all other terms above are, and (3.1) is in fact satisfied
everywhere on the set {0 < Y< 2Y∗(X)}. Let us showϒ = −∂−1

Y ∂X	. First, we
show that the right hand side is well-defined. Recall ∂X	 = −∂bY from (3.10).
Differentiating (1.17), using (3.12), gives

∂aY= −6p∗(1 + 3p∗2a2)

∫ b

−∞
g(p∗(X− b̃2))d b̃,

∂bY= 1

1 + 3p∗2a2 − 12p∗b
∫ b

−∞
g(p∗(X− b̃2))d b̃, (3.21)

where g(z) = (
�1�

′
1

(1+3�2
1 )2

)(z). Fix X ∈ R and let Y → 0. The constraint a +
p∗2a3 + b2 = X and (1.17) imply that a, b → −∞ with |a|3 ≈ b2. Using
the bounds g(z) = O(z−5/3) as z → ∞ from (3.14), we get from (3.21) that
|a∂aY| + |b∂bY| → 0 and ∂X	 = ∂bY → 0 as Y → 0. Thus ∂−1

Y ∂X	 is
well defined, and injecting this in (3.20) gives ϒ(X, Y) → 0 as Y → 0. Since
∂Yϒ = −∂X	, we obtain

ϒ = ∂−1
Y ∂X	.

The fact that (	,ϒ) solves (3.1)withϒ given as above implies that (T−t)1/2	(x/(T−
t)3/2, y/(T − t)−1/4) solves (1.12), and (ii) in Proposition 1 is proved. ��
Proof of (iii) and (iv) in Proposition 1. Step 1 Symmetry. From (1.17) and (1.18)
wehave the following symmetries: that�1(a,−b) = �1(a, b) and that�2(a, b)−
Y∗(�1(a, b)) = Y∗(�1(a, b))−�2(a,−b). This implies that�−1(X, Y∗(X)+
Y) = (�−1

1 (X, Y∗(X) − Y),−�−1
2 (X, Y∗(X) − Y)). This implies in particular

(iii).
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Step 2 The set of zero vorticity. Since the mapping (a, b) �→ (X, Y) is volume
preserving, (3.10) gives ∂bX= ∂Y	. Since ∂bX= 2b from (1.17), the zero set of
∂Y	 is {b = 0} or equivalently {Y= Y∗}. On this set, X= a+ p∗2a3, so that
	 = −a = �1(p∗X)/p∗ applying (3.12).
Step 3 Taylor expansion. This is a direct consequence of the Taylor expansion of
the fonction � at (0, 0). Let us write 	i j = ∂ iX∂

j
Y	(0, Y∗(0)). We first look at the

set {X= 0 = a+ b2 + p∗2a3}, or equivalently a = �1(p∗b2)/p∗ from (3.12).
One has, from the Taylor expansion (3.13) of �1

Y=
∫ b

−∞
db̃

1 + 3�2
1

(
p∗ b̃2

) = Y∗(0) + b+ O(|b|5),

so that b(0, Y∗(0) + Y) = Y+ O(|Y|5) as Y → 0. As a = �1(p∗b2)/p∗ =
−b2 + O(b6) from (3.13), and a = −	, one deduces the information on the
vertical derivatives of 	:

	(0, Y∗(0)) = 0, 	01 = 0, 	02 = 2, 	03 = 0. (3.22)

Let us secondly look at the set {b = 0}, corresponding to {Y = Y∗(X)}. Recall
that there holds ∂Y	(X, Y∗(X)) = 0 from Step 2. Differentiating with respect to
Xonce and twice this identity, setting X= 0, using the Taylor expansion (1.19) of
Y∗ and (3.22) gives

	11 = −2, 	21 + 2c2 + 2	12 = 0. (3.23)

Still on the set b = 0, one has 	 = −p∗�1(X)/p∗. We differentiate once, twice
and three times this identity with respect toX, and setX= 0. Using (3.13), (3.22),
(3.23) and (1.19) this gives

	10 = −1, 	20 = 2, 	30 + 3	21 + 3	12 = 6p∗2.

We need one last information. We take the identity ∂Xa = ∂bY from (3.10).
Consider the set {X= a+ b2 + p∗2a3 = 0}. Then on this set, from (1.17), since
�1(0) = 0 and � ′

1 = −1/(1 + 3�2
1 ),

∂Y

∂b
= 1

1 + 3p∗2a2 − b

∫ b

−∞
12p∗�1(p∗ b̃2)

(1 + 3�2
1 (p

∗ b̃2))3
d b̃

= 1 + O(b4) − b

∫ 0

−∞
12p∗�1(p∗ b̃2)

(1 + 3�2
1 (p

∗ b̃2))3
d b̃+ O(b3)

= 1 − b
√
p∗
∫ ∞

0

1
(√

x
3 +

√
x
3

3
) 1

2

(1 + x)2

d b̃+ O(b3),

where we changed variables x = 3p�1(pb̃2). Hence as b(0, Y∗(0) + Y) =
Y+ O(|Y|5) on this set, ∂X	(0, Y∗(0) + Y) = −1 + CY+ O(|Y|3). This
implies 	12 = 0, and we obtain the desired Taylor expansion (1.23) for 	 using
the previous information. ��
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To finish the proof of Proposition 1, there remains to prove item (v). We first
establish that 	 solves a local ODE in the Lemma below. This was, before our
discovery of formula (1.21), the way the existence and some properties of the
profile 	 had been showed.

Lemma 3.3. [4,13] 	 defined by (1.21) solves:
{

∂	
∂Y = −2

√
X+ 	 + p∗2	3, for 0 < Y� Y∗(X),

∂	
∂Y = 2

√
X+ 	 + p∗2	3, for Y∗ � Y< 2Y∗(X).

(3.24)

Proof of Lemma 3.3. From (3.10) we have that ∂Y	 = ∂bX. From (1.17), ∂bX=
2b and b2 = X− a− p∗2a3. Since a = −	, this gives

(∂Y	)2 = 4(X+ 	 + p∗2	3).

Since ∂Y	 = 2b, we get ∂Y	 � 0 for b � 0, and ∂Y	 � 0 for b � 0. As
b � 0 and b � 0 correspond respectively to Y∗(X) < 2Y∗ and 0 < Y< Y∗(X)

from (1.17) and (1.18), we obtain (3.24) from the above equation and these sign
considerations.

Proof of (v) in Proposition 1. Step 1 Proof of (1.24) and (1.25) Let X ∈ R be
fixed. Using the ODE’s (3.24), we express Y as a function of 	 and expand, for
	 � 〈X〉1/3,

Y=
∫ ∞

	

d	̃

2
√

X+ 	̃ + p∗2	̃3
=
∫ ∞

	

d	̃

(
1

2p∗	̃ 3
2

+ O

( |X|
	̃

9
2

+ 1

	̃
7
2

))

= 1

p∗2	 1
2

+ O

( |X|
	

7
2

+ 1

	
5
2

)

. (3.25)

After inversion this gives

	 = − 1

p∗2Y2 + O
(
|X|Y4 + |Y|2

)
,

which is exactly (1.24). Note that we have only established it for 	 � 〈X〉1/3,
which from the above expansion, corresponds to Y � 〈X〉−1/6. The validity of
the O() in the whole region {Y� Y∗(X)} is a consequence of step 2 below. Note
finally that (1.25) is obtained from (1.24) using the symmetry (iii) in Proposition 1.
Step 2 Proof of (1.26). We only prove the expansion in the case X → −∞, as
the other case can be handled with similar ideas. Let ψ− : [p∗−2/3,∞) be the
following function:

ψ−(z) = 1

2

∫ ∞

z

dz
√−1 + p∗2z3

.

By definition (3.19) ofC−, the range ofψ− is (0,C−]. Denote byψ−1− : (0,C−] →
[p∗−2/3,∞) its inverse, and define ϕ− to be its extension on (0, 2C−) by even
symmetry about C−, so that

ϕ−(Ỹ) :=
{

ψ−1(Y) if 0 < Ỹ� C−,

ψ−1(2C− − Ỹ) if C− � Ỹ< 2C−.
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The properties of ϕ− listed in (v) of Proposition 1 are verified by a direct check. It
remains to prove the convergence. For this we use the first equality in (3.25). Let
first 0 < Y� Y∗(X). Then,

Y(	) = 1

2

∫ ∞

	

d	̃
√

X+ 	̃ + p∗2	̃3
.

Wechangevariables and set 	̃ = zp∗−1/3�1(p∗X), anduseX= −�1(p∗X)/p∗−
�3

1 (p
∗X)/p∗, so that after some rewriting,

�
1
2
1 (p∗X)

p∗ 1
6

Y(	) = 1

2

∫ ∞
p∗1/3	

�1(p∗X)

dz
√−1 + p∗2z3

(

1 + 1

z2 p∗ 4
3 + zp∗ 2

3 + 1
�−2

1 (p∗X)

)− 1
2

= ψ−

(
p∗ 1

3 	

�1(p∗X)

)

− 1

2

∫ ∞
p∗1/3	

�1(p∗X)

dz
√−1 + p∗2z3

⎛

⎝1 −
(

1 + 1

z2 p∗ 4
3 + zp∗ 2

3 + 1
�−2

1 (p∗X)

)− 1
2
⎞

⎠

= ψ−

(
p∗ 1

3 	

�1(p∗X)

)

+ O

(

|X|− 2
3

(
	

�1(p∗X)

)− 5
2
)

,

where we used (3.14) and that 	 � �1(p∗X)/p∗ for all Y< Y∗(X). Given that
uniformly on [p∗−2/3,∞) one has |ψ ′−| ≈ (z − p∗−2/3)−1/2z−1, we can invert the

above equation for all 	 such that p∗1/3	
�1(p∗X)

− p∗−2/3 � |X|−4/3, with

p∗ 1
3 	

�1(p∗X)
= ψ−1

⎛

⎝
�

1
2
1 (p∗X)

p∗ 1
6

Y(	)

⎞

⎠+ O

(

|X|− 2
3

(
	

�1(p∗X)

)−1
)

which, given that ψ−1− (	̃) ≈ 	̃−2 uniformly on (0,C−], and that �1(X) =
|X|1/3 + O(|X|−1/3) finally gives

	 = p∗ 1
3 �1(p

∗X)ψ−1

⎛

⎝
�

1
2
1 (p∗X)

p
1
6

Y

⎞

⎠+ p∗ 1
3 �1(p

∗X)O
(
|X|− 1

3 |Y|2
)

= |X| 13 ϕ−
(
|X| 13 Y

)
+ O

(
|X|− 2

3 Y−2
)

,

where we used the fact that |Y| � |X|−1/6 as X → −∞ and Y � Y∗. For
Y∗ < Y� (2 − ε)Y∗ we write

Y= Y∗ + p∗ 1
6

�
1
2
1 (p∗X)

1

2

∫ 	

�1(p∗X)

p∗

d	̃
√

X+ 	̃ + p∗2	̃3
,
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so that changing variables with 	̃ = zp∗−1/3�1(p∗X) as previously,

�
1
2
1 (p∗X)

p∗ 1
6

Y= �
1
2
1 (p∗X)

p∗ 1
6

Y∗ + 1

2

∫ p∗1/3	

�1(p∗X)

1

dz
√−1 + p∗2z3

(

1 + 1

z2 p∗ 4
3 + zp∗ 2

3 + 1
�−2

1 (p∗X)

)− 1
2

= C− + 1

2

∫ p∗1/3	

�1(p∗X)

1

dz
√−1 + p∗2z3

+ O
(
|X|− 2

3

)
.

As we are restricting to the range Y∗ < Y� (2− ε)Y∗ the above equation, using
the asymptotic behaviour of ϕ−, gives

	 = �1(pX)

p
1
3

ϕ−

⎛

⎝
�

1
2
1 (pX)

p
1
6

Y

⎞

⎠+ O
(
|X|−1	2

)

= |X| 13 ϕ−
(
|X| 16 Y

)
+ O

(
X−1

(2Y∗(X) − Y)4

)

.

This shows the desired asymptotic behaviour (v) in Proposition 1 at −∞. The
behaviour at ∞ can be proved along similar lines. ��

3.3. Degenerate Self-Similar Profile

In this subsection, we prove Proposition 2. In order to simplify notations, we
drop the prime ’ notation for�′,	′ and Y

′∗ and simply write�,	 and Y∗ instead.
We construct an odd inXself-similar profile that is the two dimensional version

of the profile found for the full viscous Prandtl system in [6] on the transversal axis.
Again, we proceed in two parts. In the first part, we use a Lagrangian approach,
and the explicit formula (1.39) to study the curve Y∗, the symmetries of 	, and
the set of zero vorticity, and to prove it defines a self-similar profile.

In the second part, we perform an Eulerian study of the self-similar equation.
Namely, we solve (3.3). This allows us to prove the analyticity at the boundary of
	, and to study the derivatives on the axis. This shows how the two studies of (3.2)
and (3.3) can complement one another.

Proof of (i) in Proposition 2. The fact that � preserves volume is a direct com-
putation from the formula (1.36). Its analyticity and that of Y∗ are direct con-
sequences of the analyticity of �1. By fixing X ∈ R, and so fixing the relation
a+ a3 + b2a/4 = X, the vertical component of the image is

Y(a, b) = 2
∫ b

2

−∞

(
1 + b̃2

)−1
(

1 + 3�2
1

(
X

(1 + b̃2)3/2

))−1

d b̃.

Hence, using the formula (1.37), the set {�(a, b), �1 = X} consists of the interval
(0 < Y< 2Y∗(X)) where Y∗ is indeed defined by (1.37). The range of � is thus
the set {0 < Y< 2Y∗(X)}.
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ForX> 0,wechangevariables twice in (1.37), firstwith	 = (1+b̃2)1/2�1(X/

(1 + b̃2)3/2) using (3.12), and then with 	 = z�1(X) to get

Y∗(X) =
∫ 0

�1(X)

dz√|	|√X+ 	 + 	3

=
√−�1(X)

X

∫ 1

0

dz
√
z
√

1 + z�1(X)
X + z3

�3
1 (X)

X

.

The expansion of Y∗ near the origin (1.38) then comes as a direct consequence of
(3.13) and of

∫ 1

0

dz√
z
√
1 − z

= B(
1

2
,
1

2
) = π,

∫ 1

0

√
z(1 + z)√
1 − z

dz = 7

8
π.

We now turn to the expansion at infinity. We write

Y∗(X) =
√−�1(X)

X

∫ 1

0

dz
√
z
√

1 + z�1(X)
X + z3

�3
1 (X)

X

=
√−�1(X)

X

∫ 1

0

(1 + g(X, z))−1/2

√
z
√
1 − z3

dz,

where, using that �1(X) + �3
1 (X) + X= 0,

g(X, z) =
z�1(X)

X + z3
(

�3
1 (X)

X + 1

)

1 − z3
= z − z3

1 − z3
�1(X)

X

= z(1 + z)

1 + z + z2
�1(X)

X
= O

(
X− 2

3

)

uniformly on [0, 1] asX→ ∞ from (3.14). This, the integral value
∫ 1
0

dz√
z
√
1−z3

=
2
√

π

(7/6)

(2/3) and (3.14) then imply (1.20) as X→ ∞. The same limit holds at −∞

as Y∗ is an even function. ��
Now that 	 is well defined, we can study some properties directly from its

formula.

Proof of (iv) and (v) in Proposition 2. Step 1 Symmetries. We have the first sym-
metry that�1(a,−b) = �1(a, b) and that�2(a, b)−Y∗(�1(a, b)) = Y∗(�1(a, b))−
�2(a,−b), from (1.36) and (1.37). This implies�−1(X, Y∗(X)+Y) = (�−1

1 (X,

Y∗(X) − Y),−�−1
2 (X, Y∗(X) − Y)), hence 	(X, Y∗ − Y) = 	(X, Y∗ + Y)

for Y< Y∗.
Wehave the second symmetry that�1(−a, b) = −�1(a, b) and that�2(−a, b) =

�2(a, b). This implies that �−1(−X, Y) = (−�−1
1 (X, Y),�−1

2 (X, Y)), so that
	 is odd in X.
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Finally, �1 = X is negative on {a < 0}, positive on {a > 0}. Hence, on the
set {0 < Y < Y∗(X)}, 	 = −a is positive for X < 0 and negative for X > 0.
This concludes the proof of (iv).
Step 2 The set of zero vorticity. We assume the regularity properties of (iii) and the
identity (1.43) of (vi) in Proposition 2, which are proved later on in this Subsection.
Since 	 = 0 on the set {Y � 2Y∗(X)}, and is C1, we deduce that ∂Y	 = 0 on
{Y � 2Y∗(X)}. Using the symmetry property (iv) proved in Step 1, this shows
that ∂Y	 = 0 as well at the boundary {Y= 0}.

We now restrict ourselves to the set {0 < Y < 2Y∗(X)}. Since the mapping
(a, b) �→ (X, Y) is volume preserving, one inverts the Jacobian matrix to find
that

(
∂Y
∂b − ∂X

∂b

− ∂Y
∂a

∂X
∂a

)

=
(

∂a
∂X

∂a
∂Y

∂b
∂X

∂b
∂Y

)

. (3.26)

One has ∂bX = ba/2 from (1.36), so that ∂Y	(X, Y∗(X)) = −ba/2. Hence
the set where ∂Y	 is zero is equal to {a = 0} ∪ {b = 0}, which corresponds
to {X = 0} ∪ {Y = Y∗(X)}. On the set {Y = Y∗(X)} = {b = 0}, we have
a+ a3 = X so that 	(X, Y∗(X)) = −a = �1(X) using (3.12).

On the line {Y= Y∗(X)}, as	(X, Y∗(X)) = �1(X) and ∂Y�1(X, Y∗(X)) =
0, one gets that ∂X	(X, Y∗(X)) = ∂X�1(X). Hence, as ∂X�1 attains itsminimum
at the origin, theminimumof ∂X	 on {Y= Y∗} is attained at (0, Y∗(0)) = (0, π).
From (1.43), as ∂X	 = − sin2(Y/2)10�Y�2π , the minimum on the vertical axis
is also attained at (0, π).

We now show the Taylor expansion (1.42). We write 	i j = ∂ iX∂
j
Y	(0, π). As

	 is odd in X, we obtain that

	00 = 	01 = 	02 = 	03 = 0, 	20 = 	21 = 0

We proved above that ∂Y	(X, Y∗(X)) = 0. Differentiating with respect toX this
identity, settingX= 0, using the Taylor expansion (1.38) of Y∗ and the coefficients
computed above,

	11 = 0.

We differentiate once and three times this identity with respect toX, and setX= 0.
Using �1(X) = −X+ X3 + O(|X|5), the coefficients computed above and the
Taylor expansion of Y∗ at 0 (1.38) this gives

	10 = −1, 	30 = 6.

We now set a = 0. Then,

Y(0, b) =
∫ b

−∞
db̃

1 + b̃2

4

so that ∂bY(0, 0) = 1, ∂bbY(0, 0) = 0 and ∂bbbY(0) = − 1
2 . Inverting this relation

one gets ∂Yb(0, π) = 1, ∂YYb(0, π) = 0. We now use the relation (3.26) to write
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∂XYYa(0, π) = ∂YY|X(∂bY)(0, 0), which, injecting all values of the coefficients
already found, gives

	12 = 2

and ends the proof of (1.42). This closes the proof of (v).

Proof of (ii) in Proposition 2. This is, as in the previous Subsection, a conse-
quence of (ii) in Lemma 3.1. First, an elementary computation gives thatXgiven by
(1.36) solves (3.2) with α = 3/2 and β = −1/2. We have already proved that the
mapping (X, Y) �→ (a, b) is volume preserving. Applying Lemma 3.1, there ex-
ists a function ϒ on the set {(X, Y),	(X, Y) �= 0} such that (	,ϒ) solves (3.1).
Moreover, from Step 1 in the proof of Lemma 3.1, we have that 12a∂a+ 1

2b∂b is the
pushforward of ( 32X+	)∂X+(− 1

2Y+ϒ)∂Y) by the mapping (X, Y) �→ (a, b).
We apply both vector fields to Y, and the equality of the results shows

− 1

2
Y+ ϒ = 1

2
a∂aY+ 1

2
b∂bY. (3.27)

The change of variables (a, b) �→ (X, Y) being analytic, ϒ given by the above
formula is also analytic. The identity (3.1) is in fact satisfied everywhere on the set
{0 < Y< 2Y∗(X)}. We now show ϒ = −∂−1

Y ∂X	. Recall ∂X	 = −∂bY from
(3.10). Differentiating (1.36), using (3.12), we have

∂aY= −12

(

1 + 3a2 + b2

4

)∫ b
2

−∞
db̃

(1 + b̃2)
5
2

g

(
X

(1 + b̃2)
3
2

)

d b̃, (3.28)

∂bY= 1
(
1 + b2

4

)
(1 + 3�2

1

(
X

(1+b2/4)3/2

)

− 6ba
∫ b

2

−∞
db̃

(1 + b̃2)
5
2

g

(
X

(1 + b̃2)
3
2

)

d b̃, (3.29)

where g(z) = (
�1�

′
1

(1+3�2
1 )2

)(z). We now fix X ∈ R and let Y → 0. The constraint

a+ a3 + b2a/4 = X and (1.17) imply that b → −∞ and a → 0 with |b| ≈
|a|−1/2. Using that g is bounded, we get from (3.21) that |a∂aY| + |b∂bY| → 0
and ∂X	 = ∂bY→ 0 as Y→ 0. Thus ∂−1

Y ∂X	 is well defined, and injecting this
in (3.27) gives ϒ(X, Y) → 0 as Y→ 0. Since ∂Yϒ = −∂X	, we obtain

ϒ = ∂−1
Y ∂X	.

The fact that (	,ϒ) solves (3.1)withϒ given as above implies that (T−t)1/2	(x/(T−
t)3/2, y/(T − t)−1/2) solves (1.12), and (ii) in Proposition 2 is proved. ��

Wecan now end the proof of Proposition 2whichwewill do by solving equation
(3.3).
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Lemma 3.4. Continue writing 	 instead of 	̃ for the function defined by (1.39),
and it satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂Y	 = √
	
√

−	3 − 	 − X for X< 0 and 0 � Y� Y∗(X)

∂Y	 = −√
	
√

−	3 − 	 − X for X< 0 and Y∗(X) � Y� 2Y∗(X)

∂Y	 = −√−	
√

	3 + 	 + X for X> 0 and 0 � Y� Y∗(X)

∂Y	 = √
	
√

	3 + 	 + X for X> 0 and Y∗(X) � Y� 2Y∗(X).

(3.30)

Proof. From (3.10) we have that ∂Y	 = ∂bX. From (1.17), ∂bX = ba/2 and
a2b2 = 4a(X− a− a3). Since a = −	 this gives:

(∂Y	)2 = −	(X− 	 − 	3).

Using ∂Y	 = ba/2 and a = −	, we get the signs of a and ∂Y	 via (iv) in
Proposition 2 that has already been proved. Combined with the fact that b < 0
and b > 0 correspond respectively to Y∗(X) < 2Y∗ and 0 < Y< Y∗(X) from
(1.36) and (1.37), we obtain (3.24) by solving the above equation for ∂Y	. ��

With the local ODEs (3.30), we can now end the proof of Proposition 2.

Proof of (iii), (vi) and (vii) in Proposition 2. Step 1 Analyticity at the boundary.
The analyticity of 	 in the interior of its domain could be proved by studying the
ODEs (3.30), but note that it is a direct consequence of the formula (1.39), as the
diffeomorphism defined by (1.36) is analytic. We now prove the existence of an
analytic extension by solving periodic manner in Y the ODEs (3.30). To do this,
we will show that these ODEs can be used to prove the analyticity at the boundary
{Y= 0} (where the natural extension of 	 is 0).

We will establish that an extension of the mapping (X,
√−	) �→ (X, Y) is an

analytic diffeomorphism, implying the result by taking the inverse transformation.
Without loss of generality we consider the case X> 0. From (3.30) we infer that
there is a one-to-one relation between (X, Y) and (X,	(X, Y)) between the sets
{X> 0, 0 � Y� Y∗} and {X> 0, �1(X) � 	 � 0} with the formula

Y(X,	(X, Y)) =
∫ −	(X,Y)

0

dz√
z
√
X− z − z3

.

We change variables and define U = √−	. Then the above formula becomes

Y(X,U ) = 2
∫ U

0

du√
X− u2 − u6

.

This formula also makes sense for −√−�1(X) � U < 0, since X− u2 − u6 > 0
for |u| �

√−�1(X), and the mapping (X,U ) �→ (X, Y) is one-to-one from
{X> 0, |U | <

√−�1(X)} onto {X> 0, |Y| < Y∗}, such that its restriction to
nonnegative Y satisfies U (X, Y) = √−	(X, Y). Let X0 > 0. For (X, u) close
to (X0, 0), the function under the integral sign is analytic

1√
X− u2 − u6

=
∑

α∈N2

aα(X− X0)
α1u2α2 ,
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with a(0,0) = 1/
√
X0 > 0 and a(0,1) = 1/(2X3/2

0 ) > 0, and hence the integral is
also analytic

Y(X,U ) = 2
∑

α∈N2

aα

2α2 + 1
(X− X0)

α1U 2α2+1.

Therefore, the mapping (X,U ) �→ (X, Y) is an analytic diffeomorphism near
(X0, 0). Its inverse is then analytic of the form (since odd in Y)

U (X, Y) =
∑

α∈N2

bα(X− X0)
α1Y1+2α2

Since U coincides with
√−	 for Y� 0 this means that 	 is analytic of the form

	 = −U 2 =
∑

α∈N2

cα(X− X0)
α1Y2α2+2.

This proves that 	̃, restricted to the set {0 � Y � 2Ỹ∗(X)} is analytic in its
interior, and also at the lower boundary {Y = 0}. The symmetry property (iv) in
Proposition 2 implies that this restriction is also analytic at the upper boundary
{Y= 2Y∗(X)}. From the ODEs (3.30), this restriction satisfies ∂X	 = ∂Y	 = 0
at the upper boundary {Y= 2Y∗(X)}. Hence, extending 	 by 0 on the set {Y�
2Y∗(X)} maintains the C1 regularity.

Finally, the other extension (1.41) is, by the above analysis of the ODEs (3.30),
analytic on the whole upper half space H. Since it solves (3.1) with α = 3/2 and
β = −1/2 on {0 < Y< 2Y∗(X)} it thus solves it on the whole upper half space
by uniqueness of analytic expansions, and is therefore also a self-similar profile.
This ends the proof of (iii).
Step 2 First derivative on the axis. Let us consider the zone X> 0 and 0 < Y<

Y∗. One has the following convergence result

Y(X,	) =
∫ −	

0

dz√
z
√
X− z − z3

=
∫ − 	

X

0

du√
u
√
1 − u − X2u2

→
∫ −∂X	(0,Y)

0

du√
u
√
1 − u

,

as X→ 0. Hence on the vertical axis Y and ∂X	(0, Y) are linked by

Y=
∫ −∂X	(0,Y)

0

du√
u
√
1 − u

= 2 arcsin
(√−∂X	(0, Y)

)
.

This proves (vi) upon inverting the arcsin function.
Step 3 Third derivative on the axis Let φ(Y) = −∂X	(0, Y) and ψ(Y) =
∂3X	(0, Y). Since 	 solves (3.1) with α = 3/2 and β = −1/4 and vanishes
on the vertical axis {X= 0}, differentiating 3 times yields the following equation
for ψ :

4(1 − φ)ψ +
(

∂−1
Y φ − 1

2
Y

)

∂Yψ + 3∂−1
Y ψ∂Yφ = 0, ψ(0) = 0
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One computes from the formula of φ that

0 = 4ψ

(
1

2
− 1

2
cos(Y− π)

)

+ 1

2
sin(Y− π)∂Yψ − 3

2
∂−1
Y ψ sin(Y− π)

⇔ 0 = 4ψ sin2
(
Y− π

2

)

+ 1

2
sin(Y− π)∂Yψ − 3

2
∂−1
Y ψ sin(Y− π)

⇔ 0 = 4ψ tan

(
Y− π

2

)

+ ∂Yψ − 3∂−1
Y ψ.

We change variables and set ψ(Y) = ψ̃((Y− π)/2), with r = (Y− π)/2. One
then has

8ψ̃ tan(r) + ∂r ψ̃ − 12
∫ r

− π
2

ψ̃ = 0. (3.31)

We finally change again variables by setting
∫ r

− π
2

ψ̃ = f (r),

and f finally solves

f ′′ + 8 tan(r) f ′ − 12 f = 0, f
(
−π

2

)
= f ′ (−π

2

)
= 0. (3.32)

A first solution (forgetting about the boundary conditions) is

f1 = sin2 r + 1

6
.

The wronskian W = f ′
1 f2 − f ′

2 f1 between solutions solves

W ′ = −8W tan(r),

and therefore is equal up to renormalisation to

W = (cos(r))8 .

From the Wronskian relation we deduce that a second solution is given by

f2(r) =
(

sin2(r) + 1

6

)(

540r + 80 sin(2r) + 3 sin(4r) + 686

3

sin(2r)

sin2(r) + 1
6

)

.

The set of all solutions satisfying (3.32) with the boundary conditions is spanned
by

f =
(

sin2(r) + 1

6

)

U (r),

where

U (r) :=
(

540
(
r + π

2

)
+ 80 sin(2r) + 3 sin(4r) + 686

3

sin(2r)

sin2(r) + 1
6

)
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satisfies
d

dr
(U ) = 96

cos8(r)
(
sin2(r) + 1

6

)2 ,

so that the function f and its derivatives up to order 8 vanish at−π/2. The solution
to (3.31) is then ψ̃(r) = d

dr f (r), hence,

ψ̃(r) = 96
cos8(r)

sin2(r) + 1
6

+ sin(2r)

(

540
(
r + π

2

)
+ 80 sin(2r) + 3 sin(4r) + 686 sin(2r)

3 sin2(r) + 1
2

)

.

The original solution, using standard trigonometric identities, is then

ψ(Y) =
96 sin8

(
Y
2

)

cos2
(
Y
2

)
+ 1

6

− sin(Y)V (Y),

V (Y) := 270Y− 80 sin(Y) + 3 sin(2Y) − 686 sin(Y)

3 cos2
(
Y
2

)
+ 1

2

.

The strict positivity ofψ comes from the equation. Indeed, assume thatψ(Y0) = 0
for some 0 < Y0 < 2π , and that ψ > 0 on (0, Y0). Then at Y0 it holds that

∂Yψ(Y0) = 3
∫ Y0

0
ψ > 0

which is a contradiction. The regularity properties and the limited development
come from direct computations, and end the proof of (vi), namely,

∂
j
Yψ(0) = 0, j = 0, ..., 7, ∂8Yψ(0) > 0,

ψ(2π) = 0, ∂Yψ(2π) = −V (2π) = −540π < 0.

��

4. Generic singularity for the characteristics

We describe here a property that the characteristic map has generically at the
singularity time. Definition 4.1 below can be found in the analysis of [37,38], but
no argument is given to support that it would hold generically. We establish this in
Lemma 4.4, and the ideas in its proof are new. In what follows, ∇ is the gradient
in Lagrangian (X,Y ) variables. We denote by ∇⊥ the orthogonal gradient, H the
Hessian matrix and vt the transposition

∇⊥ f = (−∂y f, ∂x f ), H f =
(

∂xx f ∂xy f
∂xy f ∂yy f

)

, (v1, v2)
t = (v2, v1).

We recall that T and Tb are defined by (1.9), and that x[t] is defined by (1.7).
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Definition 4.1. (Generic condition). Let (pEx , uE ) ∈ F4 and u0 ∈ E4 be such that
T < ∞ and T < Tb. We say that the singularity of the characteristics is generic if
the mapping x[t] : (X,Y ) �→ x(t, X,Y ) satisfies the following:

(i) Uniqueness of the singular point.At timeT , there exists a uniquepoint (X0,Y0) ∈
R× (0,∞) such that∇x[T ](X0,Y0) = 0. For any (t, X,Y ) ∈ [0, T ]×Hsuch
that (t, X,Y ) �= (T, X0,Y0) and xY (t, X,Y ) = 0, it holds that xX (t, X,Y ) > 0.

(ii) Local nondegeneracy of the set of zero vorticity. It holds that

xY (t, X0,Y0) = 0 for all t ∈ [0, T ], (4.1)

∇xY (T, X0,Y0) �= 0. (4.2)

(iii) Local nondegenerate minimality for xX on the set of zero vorticity. It holds,
where all quantities below are evaluated at (T, X0,Y0), that

(∇xY )t∇⊥xX = 0, (4.3)

p20 = (∇⊥xY )t
(

HxX − (∇xY )t∇xX
|∇xY |2 HxY

)

∇⊥xY > 0. (4.4)

(iv) First order Taylor expansion of u. It holds that

uX (T, X0,Y0) < 0, and uY (t, X0,Y0) = 0 for all t ∈ [0, T ]. (4.5)

Remark 4.2. In the case of a trivial outer Eulerian flow pE = uE = 0, since
x = X + tu0, the above generic condition can be read on the initial datum u0.
Thus is equivalent to the fact that at a point (X0,Y0) with Y0 > 0 and u0Y = 0, the
restriction of u0X to the set {u0Y = 0} ∪ {Y = 0} attains a unique negative global
minimum, that moreover ∇u0y(X0,Y0) �= 0 so that the set {u0y = 0} is locally
nondegenerate, and that

p2 = p20
T 3 = (∇⊥u0Y )t

(

Hu0X − (∇u0Y )t∇u0X
|∇u0Y |2 Hu0Y

)

∇⊥u0Y > 0,

when evaluated at (X0,Y0), so that thisminimum is nondegenerate. The quantity p2

is well defined in Eulerian coordinates, and a computation shows that it satisfies the
following identity,when evaluated at the characteristics (x(t, X0,Y0), y(t, X0,Y0))
starting from (X0,Y0):

p2(t) = (∇⊥uy)
t
(

Hux − (∇uy)
t∇ux

|∇uy |2 Huy

)

∇⊥uy = p2
(
1 − t

T

)2 .

Hence p2 should be thought of in this case as a conserved quantity that will help
determine the parameters (μ, ν) of the asymptotic profile 	μ,ν,ι.5

Certain conditions in the aboveDefinition4.1 are alwaysmet, as the nextLemma
shows.

5 Up to a fixed self-similar factor
(
1 − t

T

)−2
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Lemma 4.3. Let (pEx , uE ) ∈ F4, u0 ∈ E4 and (X0,Y0) ∈ Hbe such that T < ∞,
T < Tb, and∇x(T, X0,Y0) = 0. Then for all t ∈ [0, T ] one has xY (t, X0,Y0) = 0
and uY (t, X0,Y0) = 0, and there holds uX (T, X0,Y0) < 0 and
(∇xY (T, X0,Y0))t∇⊥xX (T, X0,Y0) = 0.

Proof. We define for each (X,Y ) ∈ H the 2 × 2 matrices M = M(t, X,Y ) and
A = A(t, X,Y ) by

Ṁ = AM, M(0, X,Y ) = I d, A(t, X,Y ) :=
(

0 1
−pExx (t, x(t, X,Y )) 0

)

. (4.6)

From the above equation (4.6), one obtains that M(t) is of determinant 1 (a con-
sequence of the fact that the ODE (1.7) is volume preserving in the phase space
(x, u)), and in particular invertible. From the ODE (1.7), one deduces that at any
(X,Y ) ∈ H, xX , xY , uX and uY solve:

˙(xX
uX

)

= A

(
xX
uX

)

,
˙(xY
uY

)

= A

(
xY
uY

)

,

and therefore that they are given by the formula
(
xX (t)
uX (t)

)

= M(t)

(
1

u0X

)

,

(
xY (t)
uY (t)

)

= M(t)

(
0

u0Y

)

. (4.7)

We recover from this that the set {uY = 0} is preserved with time t . At (T, X0,Y0)
we get

(
0

uX (T, X0,Y0)

)

= M(T, X0,Y0)

(
1

u0X (X0,Y0)

)

, (4.8)

(
0

uY (T, X0,Y0)

)

= M(T, X0,Y0)

(
0

u0Y (X0,Y0)

)

, (4.9)

since ∇x(T, X0,Y0) = 0. The first identity implies uX (T, X0,Y0) �= 0 using the
invertibility of M . Next, (1, u0X (X,Y )) and (0, u0Y (X0,Y0)) must be collinear
since their images by M are collinear and M is invertible. This is only possible if
u0Y (X0,Y0) = 0, and the second identity in (4.7) then implies xY (t, X0,Y0) =
uY (t, X0,Y0) = 0 for all t ∈ [0,∞).

We recall that from Step 1 in the proof of Theorem 1, T is characterised as
the first time at which xX touches zero on the set {u0Y = 0}, which happens away
from the boundary as T < Tb. Hence xX � 0 on {u0Y = 0} ∩ {0 � t � T },
and so since xX (T, X0,Y0) = 0 and u0Y (X0,Y0) = 0, (T, X0,Y0) is a global
minimizer of xX on this set. As uY (t, X0,Y0) = 0 for all t ∈ [0, T ], ẋX = uX from
(1.7), and uX (T, X0,Y0) �= 0, necessarily uX (T, X0,Y0) < 0. Finally, if one of
the quantities in the product (∇xY (T, X0,Y0))t∇⊥xX (T, X0,Y0) is zero, then this
product is zero. If both are nonzero, since xX [T ] restricted to {xY [T ] = 0} attains a
minimum at (X0,Y0) then this quantity is zero as well by Fermat’s Theorem. This
ends the proof of the Lemma. ��

The terminology of “generic” singularity is due to the next Lemma.
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Lemma 4.4. Let (pEx , uE ) ∈ F4. In the subset of E4 of initial data u0 such that
T < ∞ and T < Tb, there exists a dense open set such that the singularity of the
characteristics is generic in the sense of Definition 4.1.

Proof of Lemma 4.4. Fix u0 ∈ E4 such that T < ∞ and T < Tb a reference
initial datum. Let (x, u) denote the solution to the ODE (1.7) with initial datum
u(0, X,Y ) = u0(X,Y ). For any δ > 0 and (u0+v) ∈ E4 with dE4(v, 0) � δ we let
(x, u) denote the solution of (1.7) with initial datum u(0, X,Y ) = (u0 + v)(X,Y ).
Step 1 Evolution of the perturbation and of the derivatives. Differentiating (1.7)
we find that the solution (x, u) can always be written under the following linearised
form

(
x(t)
u(t)

)

=
(
x(t)
u(t)

)

+ M(t)

(
0
v

)

+ F(t)v2, (4.10)

where the volume preserving matrix M is defined by (4.6), and where at a given δ,
F : [0, T ]×H→ R

2 is a function such that ‖F‖C3 � C is bounded independently
of v. As at (T, X0,Y0), M is invertible and sends the vector (1, u0X ) onto the vector
(0, uX ) from (4.8), one has that

M

(
0
1

)

=
(
m
n

)

with m(T, X0,Y0) �= 0. (4.11)

Hence, we can rewrite the first line of the identity (4.10) as

x(t) = x(t) + mv + f v2, (4.12)

where m(T, X0,Y0) �= 0, x is C4, and m and f are bounded C3 functions (with
C3 norm independent of v). We end this first step by writing the ODEs for higher
order derivatives

˙(
xYY
uYY

)

= A

(
xYY
uYY

)

+
(

0
−(xY )2 pExxx (x)

)

,

˙(
xXY
uXY

)

= A

(
xXY
uXY

)

+
(

0
−xX xY pExxx (x)

)

. (4.13)

Step 2 Generic singularities define an open set. We show in this step that if u0 is
such that the properties (i) to (iv) of Definition 4.1 are satisfied, then this is also the
case for u0 + v for δ small enough. We use bars to denote quantities related to the
initial datum u0, and no bars for those related to u0 + v.

First, we make some computations for the unperturbed solution u. At (X0,Y 0)

one has uY = xY = 0 for all times t ∈ [0,∞) from (4.9). Next, one gets from (4.7)
and (4.11) that

xY (t, X0,Y0) = m(t, X0,Y0)u0Y (X0,Y0),

and so since m(T , X0,Y 0) �= 0 from (4.11), one gets that the sets {xY = 0} and
{u0Y = 0} coincide locally near (T , X0,Y 0). Since xY (t, X0,Y 0) = 0 for all times
and ∇xY (T , X0,Y 0) �= 0 from (4.2), from standard parametrisation methods we
have that for t close to T the set {xY (t) = 0} is locally near (X0,Y 0) a curve 
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that can be parametrised as 
 = {(X(s),Y (s)), |s| < ε} for some small enough ε,
where (the derivatives being computed at (t, X0,Y 0))

(X(s),Y (s)) = (X0,Y 0) + s∇x⊥
Y + cs2∇xY + O(|s|3),

c = − 1

2|∇xY |2 (∇x⊥
Y )t HxY∇x⊥

Y .

A direct consequence of the above parametrisation is that one has the following
Taylor expansion for x X on
 for t close to T , after some elementary computations,
using that x X (T , X0,Y 0) = 0, ẋX = uX , the identity (4.3) and the definition of
p0:

x X (t, X(s),Y (s)) = −(T − t)uX (T , X0,Y 0)(1 + O(|T − t | + |s|))
+1

2
s2 p20(1 + O(|T − t |)) + O(|s|3),

d2

ds2
x X (t) = p20(1 + O(|T − t | + |s|)). (4.14)

Here p20 > 0 is defined by (4.3).
Next, we study the perturbed solution u. First, note that for the unperturbed

solution, because of (i), outside any neighbourhood of (T , X0,Y 0), there exists
c > 0 such that |∇x | > c is uniformly far away from 0. Hence, for δ small enough,
it at any time T close to T the solution is such that ∇x[T ] = 0 somewhere, this
has to be at a point near (X0,Y 0).

From the condition (4.2) for u, for δ small enough, for all t close to T , the
set {xY = 0} is near (X0,Y 0) a non-empty curve 
. Since xY (t, X0,Y0) =
m(t, X0,Y0)u0Y (X0,Y0), and thatm(T , X0,Y 0) �= 0, we obtain moreover that for
δ small enough and t close to T , 
 is independent of time. From (4.14), for δ small
enough, there exists on
, at time T , a unique point (X0,Y0) at which xX is minimal
(non necessarily 0). From the nondegeneracy condition (4.2), one obtains that for
t close to T , the curve 
 can be parametrised by 
 = {(X (s),Y (s)), |s| < ε′} for
some small enough ε′, where (the quantities below being computed at (t, X0,Y0))

(X (s),Y (s)) = (X0,Y0) + s∇x⊥
Y + cs2∇xY + O(|s|3),

c = − 1

2|∇xY |2 (∇x⊥
Y )t HxY∇x⊥

Y ,

A direct consequence of the above parametrisation and of the definition of (X0,Y0)
is that on 
, close to (T , X0,Y0),

xX (t) = xX (T , X0,Y0) − (T − t)uX (T , X0,Y 0)(1 + O((T − t) + |s| + δ))

+1

2
s2 p20(1 + O((T − t) + |s| + δ)).

As xX (T , X0,Y0) = O(δ) and uX (T , X0,Y 0) < 0, we infer from the above
expansion that the first time xX touches zero on the curve {xY = 0} is T = T+O(δ),
at least at one location s = O(δ). The condition

d2

ds2
xX (t, X (s),Y (s)) = p20(1 + O(|T − t | + |s| + δ),
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ensures that this happens at a unique location. Hence (i) is satisfied. The inequality
in (ii) is satisfied as at this point ∇xY = ∇xY + O(δ) �= 0. The inequality in (iii) is
satisfied as p20 = p20 + O(δ) > 0. Finally, all other conditions in Definition 4.1 are
satisfied fromLemma 4.3. Hence for δ small enough, the solution u has a singularity
of the characteristics that is generic in the sense of Definition 4.1.
Step 3Density of generic singularities. We now assume that u0 is such that T < ∞
and T < Tb, but that u fails to meet the conditions of Definition 4.1. For any δ > 0,
wewill find a suitable vwith dE4(v, 0) � δ such that u does satisfy these conditions.
As the generic condition involves several requirements, there are several cases to
consider.We startwith thefirst case:we assume that foru the condition (ii) holds true
(the equality is always holds true from Lemma 4.3, so only∇xY (T , X0,Y 0) �= 0 is
real assumption), and that (iv) fails (the first equality always holds from Lemma 4.3
so the real assumption is that p2 � 0). We do not assume anything regarding (i),
and we recall that (iv) is always true from Lemma 4.3.

From ∇xY (T , X0,Y 0) �= 0, as in Step 2 we infer that for all t near T , near
(X0,Y 0), the set {xY [t] = 0} is a curve 
 that we can still parametrise as 
 =
{(X(s),Y (s)), |s| < κ} for some small κ > 0 with

(X(s),Y (s)) = (X0,Y 0) + s∇x⊥
Y + cs2∇xY + O(s3),

c = − 1

2|∇xY |2 (∇x⊥
Y )t J x0Y∇x⊥

Y , (4.15)

but this time,

d2

ds2
(
x X (T , X(s),Y (s))

)

|s=0 = p20 = 0. (4.16)

This quantity cannot be negative byminimality of x X at (X0,Y 0), so indeed p20 = 0.
We assume without loss of generality that the functionm defined by (4.11) satisfies
m(T , X0,Y 0) > 0. We then perturb the initial datum u0 by

v(X0 + X, Y 0 + Y ) = ε4�

(
K (X − X0)

ε

)

χ

(
K ′(Y − Y 0)

ε

)

,

0 < ε � 1, K � K ′ � 1,

where

• � is odd in X and compactly supported in [−4, 4].
• � ′ � 0 on [−4,−2], � ′ � 0 on [−2, 0], � ′ < 0 on [−1, 0] with � ′ attaining
its minimum at the origin where � ′(0) = −1.

• � ′′′ � 1 on [−1, 0] with � ′′′(0) = 1.
• χ is a standard smooth cutoff function χ = 1 on [−1, 1] and χ = 0 outside

[−2, 2].
Note that for any value of K and K ′, v is indeed small in C3 for ε small enough.
Note also that as v vanishes for |X−X0| � 4ε/K or |Y −Y0| � 2ε/K ′ the solution



Singularities and unsteady separation for the inviscid 1391

(x, u) remains unchanged there. In the modification zone, note first that one has
the formula from (4.12):

x(t, X,Y ) = x(T ) − (T − t)u(T ) + m(T )v + f v2 + gv(T − t) + h(T − t)2,

= x(T , X,Y ) − (T − t)u(T, X,Y ) + m(T , X0,Y 0)v

+v2 f1 + v(T − t) f2 + v(X − X0) f3
+v(Y − Y0) f4 + (T − t)2 f5. (4.17)

Here all the functions f , g, h, f1, ..., f5 are C3 functions with O(1) size uniformly
in δ. Note that for t close to T , the curve 
 := {xY [t] = 0} is unchanged for
|Y −Y0| � ε/K ′, hence it is still parametrised by (4.15). It holds on this part of the
curve for t = T + O(K ε3) and |s| � ε/K , writing (X,Y ) instead of (X(s),Y (s))
to ease notation, that

xX (t, X,Y )

= x X (T , X,Y ) − (T − t)uX (T , X0,Y 0)
(
1 + O(|X − X0| + |Y − Y 0|)

)

+ K ε3� ′
(
K (X − X0)

ε

)

χ

(
K ′(Y − Y 0)

ε

)

m(T , X0,Y 0) + O(ε4)

= O(|s|3) − (T − t)uX (T , X0,Y 0) (1 + O(|s|))

+ K ε3� ′
(
K (X − X0)

ε

)

χ

(
K ′(Y − Y 0)

ε

)

m(T , X0,Y 0) + O(ε4)

= −(T − t)uX + K ε3� ′
(
K (X − X0)

ε

)

χ

(
K ′(Y − Y 0)

ε

)

m + O

(
ε3

K 3

)

,

where we wrote uX < 0 and m > 0 for uX (T , X0,Y 0) and m(T , X0,Y 0) to
ease notation. We now restrict things further to the zone of this curve for which
|X − X0| � ε/K , hence χ = 1, and we Taylor expand � to get

xX =
⎛

⎝−1 + t − T

ε3K

uX
m

+
(
K (X − X0)

ε

)2

+ O

⎛

⎝

∣
∣
∣
∣
∣

K (X − X0)

ε

∣
∣
∣
∣
∣

3
⎞

⎠+ O
(
K−4

)
⎞

⎠

ε3Km.

The above identity implies that the first time ∂X x touches 0 in the zone of the curve

 for which |X − X0| � ε/K is at a spacetime point (T, X0,Y0) with

T = T + ε3Km

uX
+ O

(
ε3K−3

)
< T , X0 = X0 + O

( ε

K 3

)
.

At such a time, on the part of the curve for which |X − X0| � ε/K it holds for
some c > 0 from the condition on � that

∂X x̃(T ) � (T − T )uX + ε3Km(−1 + c) + O

(
ε3

K 3

)

� c′ε3K , c′ > 0.
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Hence at time T on {uY = 0}, xX did not touch zero outside the part of 
 in the
zone |X − X0| � ε/K . From Lemma 4.3, the vectors∇xY and∇xX are collinear at
(T, X0,Y0). From Step 2, the second derivative of xX (T, X(s),Y (s)) with respect
to s is positively proportional to p2 computed at this point. The collinearity of∇xY
and ∇xX implies the simplification for p0 defined by (4.3):

p20
xYY

= xXXX xYY − 3xXXY xXY + 3xXYY xXX − x3XY
x2YY

xYYY . (4.18)

From (4.17) we infer that, introducing the notation P = (T , X0,Y 0),

xXXX = x XXX + O(|T − T |) + mK 3ε� ′′′
(
K (X − X0)

ε

)

+ O(ε2)

= x XXX (P) + mK 3ε� ′′′
(
K (X − X0)

ε

)

+ O(ε/K )

xYY = xYY (P) + O(
ε

K
), xXXY = x XXY (P) + O

( ε

K

)
,

xYYY = x XXY (P) + O
( ε

K

)

xXY = x XY (P) + O
( ε

K

)
, xXYY = x XYY (P) + O

( ε

K

)
,

xXX = x XX (P) + O
( ε

K

)
.

The condition ∇xY �= 0 and the fact that ∇⊥xY .∇x X = 0 ensure xYY �= 0, and
therefore,

p20 = p20 + (xYY )2mK 3ε� ′′′
(
K (X − X0)

ε

)

+ O(ε/K )

= (xYY )2mK 3ε� ′′′
(
K (X − X0)

ε

)

+ O(ε/K ) � cK 3ε

for some c > 0, where we used (4.16). This ensures that the zero we found for
xX on the curve was unique in the part |X − X0| � ε/K , and hence is globally
unique, proving (i) in Definition 4.1. The second inequality (4.2) is true as ∇xY =
∇xY +O(ε) and since we assumed∇xY (T , X0,Y 0) �= 0). We proved that p20 > 0
above. Using Lemma 4.3 u thus meets the requirements of Definition 4.1.
Step 4 Other cases Step 3 does not cover all cases. One also has to treat the case
∇xY = 0, for which (ii) fails. The set {xY = 0} is degenerate. As the parameter p
depends on third order derivatives, one has to consider three subcases, wether the
symmetric Hessian matrix HxY (T , X0,Y 0) has eigenvalues with the same sign,
different signs, or if it is degenerate. In each of these cases we can perform a similar
analysis as in Step 3, so we only explain the strategy and leave the details to the
reader.

In the case for which HxY (T , X0,Y 0) has two eigenvalues with different signs,
the set {xY [T ] = 0} is locally two crossing curves. Hence as at time T , on the set
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{xY = 0}, as the quantity x X (T ) has to be minimal at (X0,Y 0), one gets that
HuX (T , X0,Y 0) must be a nonnegative matrix. We can thus perturb the initial
datum to separate the two crossing curves in two non-crossing curves, whilemaking
a minimum for x X appear on one of these curves.

In the case for which HxY (T , X0,Y 0) has two eigenvalues with the same sign,
the set {xY [T ] = 0} is locally a point. As uX (T , X0,Y 0) < 0, by perturbing the
initial datum one can transform this point into a circle, which makes us go back
to Step 3. In the case of a degenerate matrix HxY (T , X0,Y 0) with at least a zero
eigenvalue, one perturbs the initial data to make these eigenvalues nonzero, which
makes us go back to the two previous cases. ��

5. Generic Self-Similar Separation

5.1. Strategy of the Proof and Renormalised Variables

This section is devoted to the proof of Theorem 2.We fix throughout this section
(uE , pEx ) ∈ F4 and u0 ∈ E4 such that the solution u to (1.1) has a singularity of
the characteristics that is generic in the sense of Definition 4.1. We recall that this
happens for a dense subset of initial data in E4 such that T < ∞ and T < Tb
thanks to Lemma 4.4. We will show that u satisfies the conclusion of Theorem 1.
The proof is decomposed in several steps:

• We define below self-similar Lagrangian and Eulerian variables, (a, b) and
(X, Y).6

• We computeX[t](a, b) in Subsection 5.2, and show thatX[t](a, b) ≈ �1(a, b)
(where � = (�1,�2) is defined in (1.17)).

• We compute Y[t](a, b) in Subsection 5.3 using incompressibility, from the
formula for X and the relation (A.1). We show that Y[t](a, b) ≈ �2(a, b).
The technical difficulty is the parametrisation of the level curves {X = c},
which is done differently in the three zones Zc

0, Z1 and Z2 defined by (5.8),
(5.9) and (5.10).

• Theorem 2 is proved in Subsection 5.4 in two parts. In the first one, we in-
vert the characteristics and compute (a[t](X, Y), b[t](X, Y)) and show that
(a, b) ≈ �−1(X, Y). The technical difficulty is that one performs this inversion
simultaneously at all points in an unbounded zone, and that � becomes degen-
erate at infinity and at the boundary of its support. We introduce several zones,
each with an associated renormalisation, so that the error terms are uniformly
estimated in each zone. In the second part, the explicit formula for the mapping
(X, Y) �→ (a, b) allows to retrieve u and to end the proof of Theorem 2.

The identity (4.3) implies at (T, X0,Y0) that x2XY = xXX xYY , and (4.4) implies
that xXY �= 0. There are thus four cases to consider, depending on the sign of xXX

6 The mapping (X, Y) �→ (a, b) will be showed to be close to the mapping (X, Y) �→
(a, b) = �−1(X, Y) given by the inverse of� defined in (1.17), hence this (a, b) notation.
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(which is the same as that of xYY ), and the sign of xXY . We make the hypothesis
that

xXX (T, X0,Y0) > 0 and xXY (T, X0,Y0) < 0. (5.1)

It is clear from the proof that the sign of xXY does not matter for the result (i.e.
does not change the parameters μ, ν, ι of the profile), and that the case xXX < 0
would lead to a singularity with profile −	(−X, Y), i.e. ι = −1. First, we define
centred variables, and for notational convenience,

t = T − t > 0, X = X − X0, Y = Y − Y0.

Second, we define self-similar Lagrangian variables (a, b) near (X0,Y0) as

(
a
b

)

=
(

k1t−
1
2 k2t−

1
2

−k3t−
3
4 k4t−

3
4

)(
X
Y

)

,

(
X
Y

)

=
(
X0
Y0

)

+
(
k1t

1
2 −k2t

3
4

k3t
1
2 k4t

3
4

)(
a
b

)

, (5.2)

where the constants are givenby (all expressions belowbeing computed at (T, X0,Y0)
and p0 being given by (4.4))

k1 = 1√−uX
√
6(xXX + xYY )

p0
p∗ , k2 =

√
xXX

xYY
k1, k4 =

√
1

2
√
6(−uX )

3
2

p0
p∗ ,

k3 =
√
xXX

xYY
k4

k1 = xYY
√
6
√−uX

p∗

p0
, k3 =

√
xXX

xYY
k1, k2 =

√

2
√
6(−uX )

3
2 xXX xYY

xXX + xYY

√
p∗
p0

,

k4 =
√

xYY
xXX

k2.7 (5.3)

The reader should keep in mind that there are the variables (a, b) given by
(5.2), and that there are the variables (a, b) of Proposition 1 (that will be showed
to be asymptotically equivalent). We denote by (X	, Y	) and (a, b) the change
of variables related to the unperturbed profile 	:

(a, b) �→ (X	(a, b), Y	(a, b)) = �(a, b) is the mapping � defined in (1.17),
(X, Y) �→ (a(X, Y), b(X, Y)) is the inverse of the mapping � defined in (1.17).

(5.4)

7 We abuse notations, since variables also called (a, b)were introduced in Subsection 3 to
study the profile 	. Our proof shows that these variables become asymptotically equivalent
as t ↑ T , justifying this abuse.
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The two line vectors in the above matrices in (5.2) are orthogonal. We renor-
malise the Eulerian side and use Eulerian self-similar variables (X, Y) according
to

x∗(t) = x(t, X0,Y0), X= k5
x − x∗(t)

t
3
2

, Y= k6
y

t− 1
4

, (5.5)

where

k5 = 1

−uXk1
, k6 =

√√−uX p0

2
√
6p∗ ,

so that the mapping (a, b) �→ (X, Y) preserves volume. Note that in (5.5) a slight
abuse of notation is made, as these are the (X, Y) variables of Theorem 2, but
up to some fixed renormalisation factors. This is only to simplify notations in the
forthcoming analysis.

Our analysis will prove that the parameters (μ, ν, ι) of Theorem 2 are

μ = −uXk1, ν = k−1
6 , ι = 1.8 (5.6)

5.2. Tangential Displacement

We compute here (a, b) �→ X(t, a, b), with detailed estimates to parametrise
the level curves {X = Cte} in the next Subsection. We describe two zones Z1
and Z2 near (X0,Y0), in (a, b) variables, for which the curve X = Cte can be
parametrised either with the variable b in Z1, or the variable a in Z2 (the Taylor
expansion is not precise enough to allow for a single parametrisation). For this
purpose, we assume for a small parameter 0 < δ � 1 that

0 < T − t � δ2, (5.7)

8 We recall that the value ι = 1 has been ensured by the sign assumption (5.1), see the
comments there.
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(equivalently 0 < t � δ2) and for a large constant L � 1 we define

Z0 := H\
{
|a| � δ

1
3 t−

1
2 and |b| � δt−

3
4

}
, (5.8)

Z1 = Z1[L] := Zc
0 ∩
{
|b| � L

(
1 + |a| 32

)}
, (5.9)

Z2 = Z2[L] := Zc
0 ∩ Zc

1 = Zc
0 ∩
{
|b| > L

(
1 + |a| 32

)}
. (5.10)

The zone Zc
0 defines a size one neighbourhood of (X0,Y0) in Lagrangian variables

(X,Y ), and so Z0 is an exterior zone where the dynamics remains regular. The
following two Lemmas give all estimates we will use later on. The precise value
of the constants L above do not matter, we simply will take them large enough
to ensure a dichotomy for the level curves {x = Cte}, see next Lemma 5.3. We
introduce

r = k2
k1

Lemma 5.1. For L large enough, then δ small enough, the following holds true:
for (X,Y ) ∈ Zc

0, it holds, with constants in the O()’s depending on L, that

X= a + p∗2a3
(
1 + O

(
t + |a|t 12

))
+ b2

(
1 + O

(
t + |b|t 34 + |a|t 12

))

+t
1
4 rb + O

(
a2|b|t 14 + a2t

1
2 + |b|t 12+ 3

4

)
. (5.11)

Moreover, if (X,Y ) ∈ Z1, then it holds that

X=
(
a + p∗2a3

) (
1 + O

(
t
1
4 + |a| 12 t 14

))
+ b2 + O(t

1
4 ), (5.12)

a = − 1

p∗ �1

(
p∗ (X− b2

)) (
1 + O

(
t
1
4 + |X| 16 t 14 + |b| 13 t 14

))

+O
(
t
1
12

)
. (5.13)

Also, if (X,Y ) ∈ Z2, then it holds that

X=
(
a + p∗2a3 + b2

) (
1 + O

(
t
1
4 |b| 13

))
, (5.14)

a = − 1

p∗ �1

(
p∗(X− b2)

)
+ O

(
|X| 13+ 1

18 t
1
12

)
, (5.15)

b = ±
√

X− a − p∗2a3
(
1 + O

(
|b| 13 t 14

))

= ±
√

X− a − p∗2a3
(
1 + O

(
|X| 16 t 14

))
. (5.16)

Proof. The proof uses the Taylor expansion of x near (T, X0,Y0) and the alge-
braic identities of Definition 4.1. In what follows, all symbols of functions without
arguments denote the evaluation of these functions at the point (T, X0,Y0). From
Lemma 4.4, for all t it holds that xY (t, X0,Y0) = 0 and at the point (T, X0,Y0)
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there holds xX = 0, xXt = uX , and xXX xYY = x2XY with the assumption xXX > 0
and xXY < 0 from (5.1). Thus the Taylor expansion of x at (T, X0,Y0) gives

x(T − t, X0 + X,Y0 + Y) = x∗(t) − uX tX +
(√

xXX

2
X −

√
xYY
2

Y
)2

+ xXXX

6
X3 + xXXY

2
X2Y + xXYY

2
XY2 + xYYY

6
Y3

+O
(
|X|4 + |Y|4 + t|X|2 + t|Y|2 + t2|X|

)
. (5.17)

We use now the variables (a, b), for (X,Y ) ∈ Zc
0, which means that |a| �

δ1/3t−1/2 � t−1/2 and |b| � δt−3/4 � t−3/4. From the identities (4.18), (5.2)
and (5.3), the above expression becomes

x − x∗(t) = (−uX )k1
(
t
3
2 a + t

3
2 p∗2a3

(
1 + O

(
t + |a|t 12

))

+ t
3
2 b2
(
1 + O

(
t + t

3
4 |b| + t

1
2 |a|
))

+ t
7
4 rb + O

(
a2|b|(1 − t)

7
4 + t2|a|2 + t2+

3
4 |b|
))

which, using (5.5), shows (5.11). Consider now (5.11) in the zone Z1 where |b| �
L(1+|a|3/2). Asa anda3 share the same sign, and since |a|t1/2 � 1 and |b|t3/4 � 1
we can write

X=
(
a + p∗2a3

) (
1 + O

(
t + |a|t 12

))
+ b2

(
1 + O

(
t
3
4 + t

1
2 |a|
))

+t
1
4 rb + O

(
|a|3+ 1

2 t
1
4 + |a|2t 14 + t

1
2+ 3

4 |a| 32 + t
1
2+ 3

4

)

=
(
a + p∗2a3

) (
1 + O

(
t
1
4 + |a| 12 t 14

))
+ b2 + O(t

1
4 ),

where we used |a|2 + |a|3/2 � |a + a3|. This proves (5.12). We rewrite the above
identity as

(
X− b2 + O(t

1
4 )
) (

1 + O
(
t
1
4 + |a| 12 t 14

))
= a + p∗2a3

Note that the solution to a + p∗2a3 = f is a = −�1(p∗ f )/p∗. Hence

a = − 1

p∗ �1

(
p∗ (X− b2 + O(t

1
4 )
) (

1 + O
(
t
1
4 + |a| 12 t 14

)))

Now, for t close to T0, and (X,Y ) in Zc
0, there holds O

(
t
1
4 + |a| 12 t 14

)
= o(1),

hence using (B.1) the above identity gives

a = − 1

p∗ �1

(
p∗ (X− b2 + O(t

1
4 )
)) (

1 + O
(
t
1
4 + |a| 12 t 14

))
.

Hence, from (B.1) |a| � |�1

(
p∗
(
X− b2 + O(t

1
4 )
))

| � |X|1/3 + |b|2/3 + t1/12.
This, reinjected in the above identity and using (B.1), gives (5.13). Consider now
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(5.11) in the zone Z2 where |a| � L−2/3|b|2/3 � b2/3 and |b| � L � 1. Then the
dominant term in the right hand side of (5.11) is b2 and we infer that X≈ b2 � 1
andX� |a|3. Injecting these bounds in (5.11) gives the desired identity (5.14) for
X in Z2. Then we rewrite (5.14) as

b2 = X
(
1 + O

(
|b| 13 t 14

))
− a − p∗2a3 = (X− a − p∗2a3)

(
1 + O

(
|b| 13 t 14

))

as X1/3 � |a|. Hence the solution is

b = ±
√

(X− a − p∗2a3)
(
1 + O

(
|b| 13 t 14

))

= ±
√

X− a − p∗2a3
(
1 + O

(
|b| 13 t 14

))

= ±
√

X− a − p∗2a3
(
1 + O

(
|X| 16 t 14

))
,

which shows (5.16).Wealso rewrite (5.14) asa+p∗2a3 = X−b2+O
(|X|1+1/6t1/4

)
,

so that, using (B.1),

a = − 1

p∗ �1

(
p∗ (X− b2 + O

(
|X|1+ 1

6 t
1
4

)))

= − 1

p∗ �1

(
p∗ (X− b2

))
+ O

(
|X| 13+ 1

6 t
1
4

)

This shows (5.15) and ends the proof of the Lemma. ��
The next Lemma adapts Lemma 5.1 to higher order derivatives.

Lemma 5.2. For L large enough, then δ small enough, the following holds true.
For (X,Y ) ∈ Zc

0, it holds, with constants in the O()’s depending on L, that

∂aX= 1 + 3p∗2a2

+O
(
|a||b|t 14 + |b2|t 12 + |a|3t 12 + t + t

1
2 |a| + t

1
4 |b|
)

, (5.18)

∂bX= 2b + r t
1
4 + O

(
t
3
4 |b|2 + t

1
2 |b||a| + t|a|2 + t

5
4 + t|b| + t

3
4 |a|
)

.

(5.19)

Moreover, if (X,Y ) ∈ Z1, then it holds that

∂aX= (1 + 3p∗2a2)
(
1 + O

(
t
1
4 + |a| 12 t 14

))

=
(
1 + 3�2

1

(
p∗ (X− b2

))) (
1 + O

(
t
1
12 + |X| 16 t 14 + |b| 13 t 14

))
,

(5.20)

∂aaX= 6p∗2a
(
1 + O

((
|a| 12 t 14

)))
+ O

(
t
1
4

)

= −6p∗�1

(
p∗ (X− b2

)) (
1 + O

(
t
1
4 + |X| 16 t 14 + |b| 13 t 14

))

+O
(
t
1
12

)
, (5.21)

∂bX= 2b
(
1 + O

(
t
3
4 + |a|t 12

))
+ O

(
t
1
4 + t|a|2

)
. (5.22)
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Furthermore, if (X, Y ) ∈ Z2, then it holds that

∂bX= 2b
(
1 + O

(
|b| 13 t 14

))

= ±2
√

X− a − p∗2a3
(
1 + O

(
|X| 16 t 14

))
, (5.23)

∂bbX= 2
(
1 + O

(
|b| 23 t 12

))
= 2

(
1 + O

(
|X| 13 t 12

))
, (5.24)

∂aX= 1 + 3p∗2a2 + O
(
|b| 53 t 14

)
= 1 + 3p∗2a2 + O

(
|X| 56 t 14

)
. (5.25)

Proof. We omit the proof, relying only on explicit manipulation of the Taylor
expansion of x , and which is verbatim the same as that of Lemma 5.1. ��

5.3. Normal Displacement

The function (a, b) �→ X(t, a, b) has been computed in the previous Subsec-
tion, what allows us to compute (a, b) �→ Y(t, a, b), relying on Lemma A.1. Let

[x] denote the curve {x[t](X,Y ) = x} in Lagrangian variables, with starting
point at {Y = 0}. The proof of Lemma 5.3 below ensures 
[x] enters Zc

0 either
from the bottom side {b = −δt−3/4} or from the upper side {b = δt−3/4}. By a
continuity argument, for δ small, then ε > 0 small enough, all such curves with
|x − x∗| � ε enter from the same side. Without loss of generality we assume it to
be the bottom side. This assumption is harmless: if they enter from the upper side
the same conclusions would hold from the symmetry (iii) in Proposition 1.

With the control of the behaviour of X in the zones Z1 and Z2 obtained in
Lemma 5.1, a parametrisation of these level curves as graphs over the b variable
is possible most of the time, but there is a case for which this is impossible, and
we then cut in several zones, each parametrised with either the variable a or the
variable b. The picture below is described by Lemma 5.3.

Lemma 5.3. (Lagrangian structure of the curves {x = Cte}). For all L̃ large
enough, for any L1 � L̃, there exists K ∗ � L̃ such that for K � K ∗, there
exists L∗

2 � L̃ such that for L2 � L∗
2, for δ small enough and then ε small enough,

the following holds. For any |x − x∗| � ε the set 
[x] ∩ Zc
0 consists of a curve

entering and exiting at the points (ain, bin) and (aout , bout ) with bin = −δt−3/4

and bout = δt−3/4. In addition,
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(i) For −ε � x − x∗ � K t3/2 this set can be parametrised with the variable b, via
a = a(x, b), and is contained in Z1[L2].

(ii) For K t3/2 � x − x∗ � ε this set consists on the concatenation of five curves

1, 
2, 
3, 
4, 
5 with starting and end points
(ain, bout ), (a1, b1), (a2, b2), (a3, b3), (a4, b4), and (aout , bout ) where

b1 = −L1

(
1 + |a1| 32

)
, b2 = −L1

(
1 + |a2| 32

)
,

b3 = L1

(
1 + |a3| 32

)
, b4 = L1

(
1 + |a4| 32

)
.


1 lies in Z1[L1] with a, b � −1, and can be parametrised as a curve a =
a(x, b). 
2 lies in Z2[L1] with b < 0, and can be parametrised as a curve
b = b(x, a). 
3 lies in Z1[L1] with a > 0, and can be parametrised as a curve
a = a(x, b). 
4 lies in Z2[L1] with b > 0, and can be parametrised as a curve
b = b(x, a). 
5 lies in Z1[L1] with a < 0 and b > 0, and can be parametrised
as a curve a = a(x, b).

Proof. Step 1 The in and out points Fix |x | � ε, we show the existence of the in
and out points and show that they are the only points at the boundary of Zc

0. The
in point is the point of the curve belonging to the lower boundary {b = −δt−3/4}
of Zc

0. We fix bin = −δt−3/4 and look for the corresponding parameter ain . For

(a, b) ∈ Z2[L1] one has |b| � L1, |a| � |b|2/3 and t 34 |b| = o(1) as δ → 0. Hence,
from (5.14),

X� |b|2.
In particular, if (a, bin) ∈ Z2[L1] then x(a, bin) − x∗ � δ2 > ε � x − x∗. Hence
there are no solutions in Z2[L1]. As (0, bin) ∈ Z2[L1], one has from the inequality
above x(0, bin) − x∗ > x − x∗ and as (−δ1/3t−1/2, bin) ∈ Z1[L1] one has, from
(5.12),

x(−δ1/3t−1/2, bin) − x∗ = −p∗2δ(1 + o(1)) < −ε � x − x∗. (5.26)

Hence by the intermediate valueTheorem there exists a solution ain to x(ain, bin) =
x , which is unique as ∂ax > 0 on Z1[L1] from (5.20). One can show the existence
and uniqueness of the out point (aout , bout ) at the north boundary {b = δt−3/4}
with the same argument. The computation (5.26) holds true at the left boundary
{a = −δ1/3t−1/2} of Zc

0, and a similar computation shows that x − x∗ > ε at the
right boundary {a = δ1/3t−1/2}. Hence the two points (ain, bin) and (aout , bout )
are the only points of the curve at the boundary of Zc

0.
Step 2 Proof of (i). From the first step, the strict monotonicity ∂ax > 0 in Z1[L2]
from (5.20), and since 
 ∩ Zc

0 ⊂ Z1[L2], a standard application of the implicit
function theorem gives that the curve x(a, b) = x can be parametrised with the
variable b as a = a(x, b) for b ∈ [−δt−3/4, δt−3/4].
Step 3 Proof of (ii). Fix K t3/2 � x − x∗ � ε. We first prove the existence and
uniqueness of the point (a1, b1) on the curve b1 = −L1(|a1|3/2 + 1) with a1 < 0.
On this curve, from (5.14), using the fact that |a1| � |b1|,

X(a1, b1) = b21(1 + o(1)),
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where the o(1) is as L1 → ∞. Hence, as for a1 = 0,X(0,−L1) = O(L2
1) < K �

X and, for b1 = −δt−3/4,

x

(

−
(

δ

t3/4L1
− 1

)2/3

,−δt−3/4

)

− x∗ = δ2(1 + o(1)) > ε � x − x∗,

there exists a solution (a1, b1) with b1 = −L1(|a1|3/2 + 1) and a1 < 0 to
x(a1, b1) = x . One can also show that ∂b1X = 2b1(1 + o(1)) on this curve
which implies the uniqueness of the point (a1, b1). The existence and uniqueness
of (a2, b2), (a3, b3) and (a4, b4) can be done similarly.

We now show that (ain, bin) is connected to (a1, b1) by the part of the curve
staying in Z1[L1]with a, b < 0. Indeed, note that for b = 0 and a < 0, on has x < 0
from (5.12). Also, for |a|, |b| � L1 one has from (5.12) that x(a, b) � C(L1)t3/2

so x(a, b) < x for K large enough. Consider the part of 
 which is in the zone
Z1 with a, b < 0. This proves that the only points of this set at the boundary of
Z1 ∩ {a, b < 0} are precisely (ain, bin) and (a1, b1). From a direct check on the
gradient of x , the curve 
 indeed penetrates the zone Z1 ∩ {a, b < 0} at these two
points, and so the part of 
 in the zone Z1 ∩ {a, b < 0} consists of a curve joining
these two points. Moreover, as in Z1, it holds that ∂ax > 0, from (5.20), so it can
be parametrised with the variable b.

The proof of the properties for 
i for i � 2 can be proved following the same
ideas. We just mention that in Z2[L1] there holds ∂bX> 0 for b > 0 and ∂bX< 0
for b < 0 from (5.23), which shows that the curves 
2 and 
4 can indeed be
parametrised with the variable a. ��

The knowledge of (a, b) �→ Xand of its level curves (Lemmas 5.1, 5.2 and 5.3),
allows us to retrieve the value of Yby incompressibility using (A.2).

Lemma 5.4. For any N2 � 1, for N1 large enough and then K large, the following
holds true for δ > 0 small and then ε > 0 small enough. If, in the first case,
(X,Y ) ∈ Zc

0 is such that either−ε � x(a, b)−x∗ � K t3/2, or, K t3/2 � x−x∗ � ε

and b < 0 and N2|X(a, b)| � |b|2 then it holds that

Y(a, b) = Y	(a, b) +
∫ b

−∞

O
(
t
1
12 + |b̃| 14 t 3

16 + |X| 16 t 14
)

1 + 3�2
1

(
p∗
(
X− b̃2

)) db̃ + O(t
1
4 ), (5.27)

∂aY(a, b) = ∂aY
	(a, b) + 6p∗ (1 + 3�2

1

(
p∗ (X− b2

)))

×
(∫ b

−∞

�1

(
p∗ (X− b̃2

))
O
(
t
1
12 + |X| 16 t 14 + |b̃| 14 t 3

16 + t
1
4 |b| 13

)

(
1 + 3�2

1

(
p∗(X− b̃2)

))3 db̃

+
∫ b

−∞

O
(
t
1
12

)

(
1 + 3�2

1

(
p∗(X− b̃2)

))3 db̃ + O(t
7
4 )

)

.9 (5.28)
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If, in the second case, (X,Y ) ∈ Zc
0 is such that

N1 � |p∗2a3 + b2|, b2 � N2|p∗2a3 + b2|, (5.29)

then

Y(a, b) = Y	(a, b)
(
1 + O

(
t
1
12 |X| 1

18

))
,

∂aY(a, b) = ∂aY
	(a, b) + O

(
t
1
12 |X|− 1

2+ 1
18

)
, (5.30)

∂bY(a, b) = ∂bY
	(a, b) + O

(
|X|− 2

3+ 1
18 t

1
12

)
. (5.31)

Proof of Lemma 5.4. The proof is relegated to Appendix B. ��

5.4. Inverting the characteristics map

WenowproveTheorem2.Ourmain strategy is to renormalise the characteristics
and to invert them precisely. The below drawing sums up the transformations. In
particular, we will show that the mapping (a, b) �→ (X, Y) is close to the mapping
� defined by (1.17).Wewill use a perturbative argument to show the inverse is close
to �−1 = (a, b). However, this inversion is done in an unbounded zone, which
forces us to renormalise the perturbation problems when approaching infinity or
the boundary of support of 	. Hence we need precise asymptotic estimates for a
and b. The Lemma below provides us with all the estimates that will be used to
conclude the proof of Theorem 1.

Lemma 5.5. One has the formulae for the mappings (X	, Y	) and (a, b) defined
by (5.4):

∂aY	(a, b) = 6p∗ (1 + 3p∗2a2
) ∫ b

−∞
�1

(
p
(
X	(a, b) − b̃2

))

(
1 + 3�2

1

(
p(X	(a, b) − b̃2)

))3 d b̃,

∂bY
	(a, b) = 1

1 + 3p∗2a2 + 12p∗b
∫ b

−∞
�1

(
p
(
X	(a, b) − b̃2

))

(
1 + 3�2

1

(
p(X	(a, b) − b̃2)

))3 d b̃, (5.32)

(
∂Xa ∂Ya

∂Xb ∂Yb

)

=
(

∂bY
	 −∂bX

	

−∂aY	 ∂aX
	

)

. (5.33)

9 Note that in this second subcase, for K large, from (5.11) one has necessarily |a| ≈
|b|2/3 � 1.
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(i) Bottom of the self similar zone. There exists ci �= 0 for i = 1, ..., 4 such that,
as κ → 0, for all (X, Y) ∈ H such that, 0 < Y � κ〈X〉−1/6, it holds that
b < 0 and

|p∗2a3 + b2| = o(b2), |b| ≈ 1

Y3 , |a| ≈ 1

Y2 ,

∣
∣
∣
∣
∣
∣
∣

∫ b

−∞
�1(X− b̃2)

(
1 + 3�2

1 (X− b̃2)
)3 d b̃

∣
∣
∣
∣
∣
∣
∣

≈ |b|− 7
3 ,

and, at the point (a, b) = (a, b)(X, Y),

|∂aX	| ∼ c1|b| 43 , |∂bX	| ∼ c2|b|,
|∂aY	| ∼ c3|b|−1, |∂bY	| ∼ c4|b|− 4

3 . (5.34)

(ii) Sides of the self similar zone. For κ > 0 small, there exists M∗(κ) with
M∗(κ) → ∞ such that, for M � M∗(κ), |X| � M and κ|X|−1/6 � Y �
(2 − κ)C±|X|−1/6 where ± = sgn(X),

|b| � C(κ)|p∗2a3 + b2|, |p∗2a3 + b2| � M

2
, |b| ≈ |X|1/2, |a| ≈ |X| 16 ,

∂Xa ∼ |X|− 2
3 ϕ1±(Y|X|1/6), ∂Ya ∼ |X| 12 ϕ2±(Y|X|1/6),

∂Xb ∼ |X|− 1
2 ϕ3±(Y|X|1/6), ∂Yb ∼ |X| 23 ϕ4±(Y|X|1/6), (5.35)

for some functions ϕ
j
± ∈ C∞(0, 2C±) where ± = sgn(X), such that

((ϕ1±, ϕ3±), (ϕ2±, ϕ4±)) is volume preserving. For N , Ñ > 0, we have as Ñ → ∞
and N 2 Ñ−1 → ∞ that for (a, b) ∈ R

2 with |p∗2a3+b2| � max(N , Ñ−1b2)

it holds that

Y	(a, b) ≈ |X	(a, b)|− 1
6 ,

∫ b

−∞
|b̃| 19 d b̃

1 + 3�2
1

(
p∗(X	(a, b) − b̃2)

) � |X	(a, b)|− 1
6+ 1

18 , (5.36)

∣
∣
∣
∣
∣
∣
∣

∫ b

−∞

�1

(
p∗(X	 − b̃2)

)
d b̃

(
1 + 3�2

1

(
p∗(X	 − b̃2)

))3

∣
∣
∣
∣
∣
∣
∣

� |X	|− 7
6 ,

∫ b

−∞

|�1

(
p∗(X	 − b̃2)

)
||b̃| 1

12 d b̃
(
1 + 3�2

1

(
p∗(X	 − b̃2)

))3 � |X	|− 7
6+ 1

24 . (5.37)

Proof of Lemma 5.5. All identities in Lemma 5.5 are direct consequences of the
formula for the mapping� defined by (1.17), and of the other properties of	 listed
in Proposition 1. To avoid repetition, we do not give a proof and refer to Section 3
for the study of these functions. ��
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Weare now in position to end the proof of Theorem 1. The proof is lengthy and a
bit repetitive. The computations are however detailed for clarity. For |x−x∗(t)| � ε,
let 


(Xout ,Yout )
(Xb,0)

be the part of the curve 
[x] = {x[t](X,Y ) = x} joining the
boundary of the upper half plane and the point (aout , bout ) defined in Lemma 5.3.
We define

y∗(t, x) =
∫



(Xout ,Yout )
(Xb ,0)

ds

|∇x | . (5.38)

We introduce the following zones: the core, the sides, the bottom and the top of the
self-similar zone, and the zones below and above, respectively; that is,

Zco[Mco, κco]
=
{

|x − x∗| � Mcot3/2, κcot−1/4 � y � 2

(

Y∗
μ,ν,ι

(
x − x∗

t3/2

)

− κco

)

t−
1
4

}

,

(5.39)

Zsi [Msi , κsi ] =
{

Msi t3/2 � |x − x∗| � ε,
κsi

|x − x∗| � y � Csgn(x−x∗) − κsi

|x − x∗|1/6
}

,

(5.40)

Zbo[Kbo, κbo] =
{

|x − x∗| � ε, Kbo � y � κbo

|x − x∗|1/6 + t1/4

}

, (5.41)

Zto[Mto, κto] = {|x − x∗| � ε, y∗(t, x)(1 − κto) � y � y∗(t, x) − Kto
}
,

(5.42)

Zbe[Kbo] = {|x − x∗| � ε, 0 � y � Kbo
}
, (5.43)

Zab[Kto] = {|x − x∗| � ε, y∗(t, x) − Kto � y
}
. (5.44)

This corresponds to the picture

Their Lagrangian counterparts are defined as follows:

Zco[Nco] = {|a| � Nco, |b| � Nco
}
, (5.45)

Zsi [Nsi , Ñsi ] = Zc
0 ∩
{
Nsi � |p∗2a3 + b2|, b2 � Ñsi |p∗2a3 + b2|.

}
, (5.46)

Zbo[Nbo, Ñbo] =
{
−δt−3/4 � b � −Nbo, Ñbo|p∗2a3 + b2| � b2

}
, (5.47)

Zto[Mto, κto] =
{
−δt−3/4 � b � −Nto, Ñto|p∗2a3 + b2| � b2

}
(5.48)
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Proof of Theorem 1. We invert the characteristics, bearing inmind that the leading
order term is (a, b) as defined in (5.4). The change of variables preserving volume,
one has (

∂Xa ∂Ya
∂Xb ∂Yb

)

=
(

∂bY −∂bX

−∂aY ∂aX

)

Once the characteristics are inverted,weuse theTaylor expansion ofu inLagrangian
variables near (X0,Y0) (a direct consequence of (5.2)), where uX below is evaluated
at (T, X0,Y0), to get

u(t, X,Y ) = u∗ − (−uXk1)at
1
2 + O

(
t
3
4 |b| + t|a|2 + t

3
2 |a|
)

(5.49)

∂au = −(−uXk1)t
1
2

(
1 + O

(
T − t + t

1
2 |a| + t

3
4 |b|
))

,

∂bu = O(t
3
4 ), (5.50)

∂Xu = ∂au∂bY− ∂bu∂aY, ∂Yu = −∂au∂bX+ ∂bu∂aX. (5.51)

We fix, once for all, the variables L1 and L2 such that Lemmas 5.1, 5.2 and 5.3
hold true.
Step 1 The core of the self-similar zone. We claim that for any Mco, κco > 0,
for δ small and then ε small, the estimates (1.28), (1.29) and (1.30) hold true for
(x̂, ŷ) ∈ Zco. Fix then (x̂, ŷ) ∈ Zco, and define (X̂, Ŷ) by (5.5). We want to invert
the characteristics and to find the corresponding â and b̂ such that (x, y)(â, b̂) =
(x̂, ŷ).

Let Nco � 1 to be chosen later on and consider (a, b) ∈ Zco. We will first show
a priori estimates in Zco, that will allow us to prove that (â, b̂) ∈ Zco. This will
justify the a priori estimates and prove the claim. The zone Zco lies in the zone Z1
for δ small enough, so the corresponding estimates in Lemma 5.1 apply. Moreover,
as |a|, |b|, |X| � 1, one obtains from (5.11), (5.20) and (5.22) that

X= a + p∗2a3 + b2 + O
(
t
1
4

)
= X	(a, b) + O

(
t
1
4

)
,

and, similarly,

∂aX= 1 + 3p∗2a2 + O
(
t
1
4

)
= ∂aX

	 + O
(
t
1
4

)
,

∂bX= 2b + O
(
t
1
4

)
= ∂bX

	 + O
(
t
1
4

)
. (5.52)

Since |X| � 1, one can use the identities (5.27) and (5.28). Injecting that |X|, |b| �
1 and that 1 + 3�2

1

(
p∗ (X− b2

))
� (1 + |b̃|4/3) for b̃ � b from (3.14) in (5.27)

gives

Y(a, b) = 2
∫ b

−∞
db̃

1 + 3�2
1

(
p∗ (X− b2

)) + O

(∫ b

−∞
|b̃| 14 t 3

16

1 + |b̃| 43
db̃

)

+ O
(
t
1
12

)

= Y	(a, b) + O
(
t
1
12

)
.
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Injecting that |b|, |X| � 1 and 1 + 3�2
1

(
p∗ (X− b2

)) ≈ (1 + |b̃|4/3) in (5.28)
gives, similarly, that

∂aY(a, b) = 6p∗ (1 + 3�2
1

(
p∗ (X− b2

))) ∫ b

−∞

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗(X− b̃2)

))3 db̃

+O

(∫ b

−∞
t
1
12 + |b̃| 14 t 3

16

1 + b̃
10
3

db̃

)

+ O
(
t
7
4

)

= ∂aY
	(a, b) + O

(
t
1
12

)
.

We retrieve the last partial derivative ∂bY(a, b) by incompressibility, using ∂aX≈
1, (5.52) and the above identity to get

∂bY(a, b) = 1 + ∂aY∂bX

∂aX
=

1 +
(
∂aY

	 + O
(
t
1
12

)) (
∂bX

	 + O
(
t
1
4

))

∂aX	
(
1 + O

(
t
1
12

))

= ∂bY
	 + O

(
t
1
12

)
.

We are now ready to invert the characteristics. We look for a solution of the form
(a, b) = (a + h1, b + h2

)
to (x, y)(a, b) = (x, y), where

(a, b) =
(
a
(
X̂, Ŷ

)
, b
(
X̂, Ŷ

))
=
(
−	

(
X̂, Ŷ

)
, b
(
X̂, Ŷ

))
.

As for (x̂, ŷ) ∈ Zco, (X̂, Ŷ) is in a compact zone inside the support of 	, then
(a, b) ∈ Zco for Nco large enough depending on Mco and κco, so that our previous
computations apply. Consider then the mapping

� : (h1, h2) �→ (
X
(
a + h1, b + h2

)
, Y
(
a + h1, b + h2

))
.

From the estimates on the derivatives done above, it holds for |h1|, |h2| = O(t1/12)
that

(
∂h1�1 ∂h2�1
∂h1�2 ∂h2�2

)

=
(

∂aX
	(a, b) ∂bX

	(a, b)
∂aY

	(a, b) ∂bY
	(a, b)

)

+ O
(
t
1
12

)
. (5.53)

Also, again from the computations performed above,

�(0, 0) −
(
X̂, Ŷ

)
= O

(
t
1
12

)
.

Note that, as a and b vary in Zco, the first term in the right hand side of (5.53)
belongs to a compact set of invertible matrices. Hence we can invert the above
equation applying the implicit function Theorem, uniformly as t → T for all

(x̂, ŷ) ∈ Zco: there exists (h1, h2) = O(t
1
12 ) such that �(h1, h2) =

(
X̂, Ŷ

)
.

Hence we inverted the characteristics and found that

â = a + O
(
t
1
12

)
= −	(X̂, Ŷ) + O

(
t
1
12

)
, b̂ = b + O

(
t
1
12

)
.
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Using the Taylor expansion (5.49) of u and the fact that |â|, |b̂| � 1,

u(t, x̂, ŷ) = u(t, X̂ , Ŷ ) = u(t, X0,Y0) − (−uXk1)t
1
2

(
â + O

(
t
1
4

))
,

so we infer from (5.6) that,

u(t, x̂, ŷ) = u∗ + t
1
2

(

	μ,ν,ι

(
x̂ − x∗

t
3
2

,
ŷ

t− 1
4

)

+ O
(
t
1
12

))

, (5.54)

which shows (1.28). Once the inversion is done, the estimates for the derivatives
(1.29) and (1.29) follow naturally, as from (5.50), (5.51), (5.33) and the above
estimates, to give

∂Xu(t, x̂, ŷ) = −t
1
2 ∂bY

	
(
1 + O

(
t
1
12

))
+ O(t

3
4 )

= t
1
2 ∂X	μ,ν,ι

(
x̂ − x∗

t3/2
,

ŷ

t−1/4

)

+ O
(
t
1
12

)
(5.55)

∂Yu(t, x̂, ŷ) = t
1
2 ∂bX

	
(
1 + O(t

1
12 )
)

+ O
(
t
3
4

)

= t
1
2 ∂Y	μ,ν,ι

(
x̂ − x∗

t3/2
,

ŷ

t−1/4

)

+ O
(
t
1
12

)
. (5.56)

Step 2 The bottom of the self-similar zone. We claim that there exists Kbo∗ > 0
such that for all Kbo � K ∗

bo, and κco > 0, for δ small and then ε small, the estimates
(1.28), (1.29) and (1.30) hold true for (x̂, ŷ) ∈ Zbo.

We apply a similar strategy as in Step 1. However the leading order term of the
characteristics, which is still (X	, Y	), becomes degenerate in this zone. Hence
we first renormalise the characteristics, in order to prove that their invertibility
is uniformly possible in Zbo. Fix (x̂, ŷ) ∈ Zbo meaning |X̂| � k5εt−3/2 and
k6Kbot1/4 � Ŷ� k6κbo/(k

−1/6
5 |X̂|1/6+1), and consider (a, b) ∈ Zbo for Nbo, Ñbo

to be chosen later. One has from (5.47) and from (5.11) that

a < 0, |b| ≈ |a|3/2 � 1 and |X| � |b|2 (5.57)

for all Nbo, Ñbo large enough, hence (a, b) ∈ Z1. Consequently all the compu-
tations corresponding to the zone Z1 in Lemma 5.1 apply. The identities (5.12),
(5.20) and (5.22) give, when injecting the bounds (5.57),

X=
(
a + p∗2a3 + b2

)
+ O

(
t
1
4 |b|2+ 1

3

)

= X	(a, b) + O
(
t
1
4 |b|2+ 1

3

)
, (5.58)

∂aX= (1 + 3p∗2a2)
(
1 + O

(
|b| 13 t 14

))

= ∂aX
	(a, b)

(
1 + O

(
|b| 13 t 14

))
, (5.59)

∂bX= 2b
(
1 + O

(
|b| 13 t 14

))
= ∂bX

	(a, b)
(
1 + O

(
|b| 13 t 14

))
. (5.60)
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We now compute Y. Since b < 0 and |X| � |b|2, (5.27) and (5.28) apply. As
|X| � |b|2 and b < 0, then, for b̃ � b, one has from (B.1) and (5.57) that

|b̃| � 1, �2
1 (p

∗(X− b̃2)) ≈ |b̃|4/3 and |X| � |b̃|. (5.61)

Injecting the above bound and (5.57) in the identity (5.27), and using (5.34), gives

Y= 2
∫ b

−∞
db̃

1 + 3�2
1

(
p∗
(
X− b̃2

)) + O

(∫ b

−∞
t
1
12 |b̃| 19 db̃

|b̃| 43

)

+ O
(
t
1
4

)

= Y	(a, b)
(
1 + O

(
t
1
12 |b| 19

))
. (5.62)

Similarly, injecting (5.61) and (5.57) in the integral (5.28) to give ∂aY, and using
(5.32), gives

∂aY(a, b) = 6p∗ (1 + 3�2
1

(
p∗ (X− b2

)))

⎛

⎜
⎝

∫ b

−∞

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗(X− b̃2)

))3 + O

(∫ b

−∞
t
1
12 |b̃| 19
|b̃| 103

db̃

)

+ O
(
t
7
4

)

⎞

⎟
⎠

= ∂aY
	(a, b)

(
1 + O

(
t
1
12 |b| 19

))
.

We compute the last partial derivative ∂bY(a, b) via the incompressibility, using
(5.59), (5.60) and the above bound, and (5.34) to get

∂bY(a, b) = 1 + ∂aY∂bX

∂aX
=

1 + ∂aY
	∂bX

	
(
1 + O

(
|b| 19 t 1

12

))

∂aX	
(
1 + O

(
|b| 19 t 1

12

))

= ∂bY
	(a, b)

(
1 + O

(
t
1
12 |b| 19

))
.

Wecannow invert the characteristics.We look for a solutionof (x, y)(â, b̂) = (x̂, ŷ)

of the form (a, b) = (a + h1|b| 23 , b(1 + h2)) close to

(a, b) =
(
a
(
X̂, Ŷ

)
, b
(
X̂, Ŷ

))
=
(
−	

(
X̂, Ŷ

)
, b
(
X̂, Ŷ

))
,

and with a priori bound |h1|, |h2| � |b|1/12t1/16. From (i) in Lemma 5.5, since
(x̂, ŷ) ∈ Zbo,

b < 0, |b| ≈ 1

t
3
4 ŷ3

, |a| ≈ 1

t
1
2 ŷ2

, |p∗2a3 + b
2| � 1

Ñ∗
bo

b
2

(5.63)

for all κbo small enough, for some Ñ∗
bo(κbo) → ∞ as κbo → 0. Since Ŷ �

κbo〈X〉−1/6 we obtain from (5.63) that b → −∞ as κbo → 0. Since ŷ � Kbo we
get from (5.63) that b � −δt−3/4 if δ � K−3

bo . Thus, by taking Kbo large and κbo
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small, there always exist some large Nbo, Ñbo and small δ such that (a, b) ∈ Zbo.
Consider now the mapping

� : (h1, h2) �→
⎛

⎝
X
(
a + h1|b| 23 , b(1 + h2)

)

b
2 , Y

(
a + h1|b| 23 , b(1 + h2)

)
|b| 13

⎞

⎠ .

From the computations on the derivatives above, (5.34) and (5.63), we have

(
∂h1�1 ∂h2�1
∂h1�2 ∂h2�2

)

=
(

|b|− 4
3 ∂aX

	(a, b) |b|−1∂bX
	(a, b)

|b|∂aY	(a, b) |b| 43 ∂bY	(a, b)

)

+ O
(
ŷ− 1

3

)
.

From (5.34) the above matrix is bounded, and the leading order term in the right
hand side is close to a fixed invertible matrix in the whole zone under consideration.
From (5.58) and (5.62),

�(0, 0) −
(

X̂

|b|2 , Ŷ|b| 13
)

= O
(
|b| 19 t 1

12

)
= O

(
ŷ− 1

3

)
.

Therefore, one can apply the implicit function Theorem to get that there exists

(h1, h2) = O(ŷ−1/3) such that �(h1, h2) =
(

X̂

|b|2 , Ŷ|b| 13
)
(or equivalent) for the

characteristics

â = a + h1|b| 23 = a
(
1 + O

(
ŷ− 1

3

))
, b̂ = b(1 + h2)) = b

(
1 + O

(
ŷ− 1

3

))
,

where we used that |a| ≈ |b|2/3. Hence, using the Taylor expansion (5.49) of u and
the fact that |â|3 ≈ |b̂|2 � 1,

u(t, x̂, ŷ) = u(t, X̂ , Ŷ ) = u(t, X0,Y0) − (−uXk1)t
1
2 â(1 + O(|â|t1/2)),

so from (5.6) we infer that

u(t, x̂, ŷ) = u∗ + t
1
2 	μ,ν,ι

(
x̂ − x∗

t
3
2

,
ŷ

t− 1
4

)(

1 + O

(
1

ŷ
1
3

))

, (5.64)

which shows (1.28). Again, the estimates for the derivatives (1.29) and (1.30) follow
from (5.50), (5.51), (5.33), (5.34) and the above estimates to end

∂Xu = ∂au∂bY− ∂bu∂aY= −t
1
2 ∂bY

	

(

1 + O

(
1

|ŷ| 13

))

+ O
(
t
3
4 |b̂|−1

)

= t
1
2 ∂X	μ,ν,ι

(

1 + O

(
1

|ŷ| 13

))

, (5.65)

∂Yu = −∂au∂bX+ ∂bu∂aX= t
1
2 ∂bX

	

(

1 + O

(
1

|ŷ| 13

))

+ O
(
t
3
4 |b̂|
)

= t
1
2 ∂Y	μ,ν,ι

(

1 + O

(
1

|ŷ| 13

))

. (5.66)
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Step 3 The sides of the self-similar zone. We claim that there exists κsi∗ > 0 such
that for all 0 < κsi � κ∗

si , for Msi large enough, then for δ small and then ε small,
the estimates (1.28), (1.29) and (1.30) hold true for (x̂, ŷ) ∈ Zsi .

Fix then (x̂, ŷ) ∈ Zsi corresponding to k5εt−3/2 � X̂� −k5Msi and k6k
1/6
5 κsi

|X̂|−1/6 � Ŷ � k6k
1/6
5 (C− − κsi )|X̂|−1/6 on the left side, or to k5Msi � X̂ �

k5εt−3/2 and k6k
1/6
5 κsi X̂

−1/6 � Ŷ � k6k
1/6
5 (C+ − κsi )X̂

−1/6 on the right side.
Let (a, b) ∈ Zsi for Nsi , Ñsi to be fixed large later on. In Zsi , from (5.46), |a| �
(|p∗2a3 + b2| + b2)1/3 � Ñ 1/3

si |p∗2a3 + b2|1/3, so one infers from (5.11) that

X= (p∗2a3 + b2)

(

1 + O

(
|a|

|p∗2a3 + b2| + |b|t 14
|p∗2a3 + b2| + |p∗2a3 + b2| 1

24 t
1
6

))

= (p∗2a3 + b2)

(

1 + O

(

Ñ
1
3
si N

− 2
3

si + |p∗2a3 + b2| 1
24 t

1
6

))

which implies that |X| ≈ |p∗2a3 + b2| provided Nsi � Ñ 2
si . Hence the bounds in

this zone are

|X| � Nsi � 1, |b| � |X| 12 , |a| � |X| 13 . (5.67)

Injecting these bounds in (5.11), (5.18) and (5.19), one gets

X=
(
a + p∗2a3 + b2

) (
1 + O

(
t
1
4 |X| 16

))
= X	(a, b)

(
1 + O

(
t
1
4 |X| 16

))
,

∂aX= 1 + 3p∗2a2 + O
(
|X| 56 t 14

)
= ∂aX

	 + O
(
|X| 56 t 14

)
, (5.68)

∂bX= 2b + O
(
t
1
4 |X| 23

)
= ∂bX

	 + O
(
t
1
4 |X| 23

)
. (5.69)

In addition, the estimates (5.30) and (5.31) apply and the following estimates are
true for Y:

Y= Y	(a, b)
(
1 + O

(
t
1
12 |X| 1

18

))
, ∂aY= ∂aY+ O

(
t
1
12 |X|− 1

2+ 1
18

)
,

∂bY= ∂bY
	 + O

(
|X|− 2

3+ 1
18 t

1
12

)
.

With these identities we can now invert the characteristics, and again, will renor-
malise in a suitable way the perturbation problem. We look for a solution (â, b̂) of
the form (a, b) = (a + h1|X|1/3, b + h2|X|1/2) to (x, y)(â, b̂) = (x̂, ŷ), where

(a, b) =
(
a
(
X̂, Ŷ

)
, b
(
X̂, Ŷ

))
=
(
−	

(
X̂, Ŷ

)
, b
(
X̂, Ŷ

))
.

As x̂, ŷ is in the zone (5.41), this produces, thanks to (ii) in Lemma 5.5 that

|b|2 � C(κsi )|p∗2a3 + b
2|, |p∗2a3 + b

2| � Msi .

Hence, for any κsi small enough, there exists Nsi , Ñsi large with Nsi � Ñ 1/2
si

such that for Msi large enough, if (â, b̂) ∈ Zsi then (a, b) ∈ Zsi , which shows
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the validity of all the computations done so far. From the above computations one
infers that

X(a, b) = X̂ ·
(
1 + O

(
|x̂ − x∗| 16

))
, Y(a, b) = Ŷ ·

(
1 + O

(
|x̂ − x∗| 1

24

))
.

Consider the mapping

� : (h1, h2) �→
⎛

⎜
⎝

X
(
a + h1|X| 13 , b + h2|X| 12

)

|X| , Y
(
a + h1|X| 13 , b + h2|X| 12

)
|X| 16

⎞

⎟
⎠

From the estimates on thederivatives done above, it holds for |h1|, |h2| = O(|x̂ |1/18)
that

(
∂h1�1 ∂h2�1
∂h1�2 ∂h2�2

)

=
⎛

⎝

1

|X| 23
∂aX

	(a, b) 1

|X| 12
∂bX

	(a, b)

|X| 12 ∂aY	(a, b) |X| 23 ∂bY	(a, b)

⎞

⎠+ O
(
|x̂ | 1

18

)
,

and the Jacobian matrix of�must preserve volume. From the computations above,

�(0, 0) −
(

X̂

|X| , Ŷ|X| 16
)

= O
(
|x̂ | 1

18

)
.

Note that, due to (5.35), as X → +∞, in the zone that we consider (5.46), the
leading order matrix in the identity giving the Jacobian of � in the right hand
side belongs to a compact set of matrices with determinant 1. Hence, applying
the inverse function Theorem, we can invert the above equation, uniformly as

ε → 0 in the zone that we consider: there exists (h1, h2) = O(|x̂ | 1
24 ) such that

�(h1, h2) =
(

X̂

|X| , Ŷ|X| 16
)
. Hence we inverted the characteristics and found that

â = a
(
1 + O

(
|x̂ | 1

18

))
, b̂ = b

(
1 + O

(
|x̂ | 1

18

))
.

Hence, using the Taylor expansion (5.49) of u and the fact that |â|3, |b̂|2 � |X̂|,

u(t, x̂, ŷ) = u(t, X,Y ) = u∗ − (−uXk1)t
1
2 â + O

(
|b̂|t 34 + |â|3t 32

)

= −(−uXk1)t
1
2

(
â + O

(
|X̂| 13+ 1

6 t
1
4

))
,

and we infer from (5.6) that

u(t, x̂, ŷ) = u∗ + t
1
2

(

	μ,ν,ι

(
x̂ − x∗

t
3
2

,
ŷ

t− 1
4

)

+ O

(
|x̂ − x∗| 13+ 1

18

t
1
2

))

,

(5.70)



1412 C. Collot, T.-E. Ghoul & N. Masmoudi

which shows (1.28). The estimates for the derivatives (1.29) an (1.30) follow from
(5.50), (5.51), (5.33), (5.34) and the above estimates to give

∂Xu = ∂au∂bY− ∂bu∂aY

= −t
1
2 ∂bY

	 + O
(
t
1
2+ 1

12 |X|− 2
3+ 1

18

)
(

1 + O

(
1

|ŷ| 13

))

+ O
(
t
3
4 |X|− 1

2

)

= t
1
2 ∂X	μ,ν,ι + O

(
t
3
2 |x |− 2

3+ 1
18

)
(5.71)

∂Yu = −∂au∂bX+ ∂bu∂aX= t
1
2 ∂bX

	 + O
(
t
3
4 |X| 23

)
+ O

(
t
3
4 |X| 23

)

= t
1
2 ∂Y	μ,ν,ι + O

(
t−

1
4 |x | 12+ 1

6

)
(5.72)

Step 4 End of the proof of (1.28), (1.29) and (1.30). These stability estimates
concerning the self-similar zone and the bottom, are direct consequences of Step
1, 2, and 3, upon choosing first the parameter κbo and Kbo, then κsi and Msi , and
finally Mco, and then taking δ small and ε small, to ensure the zones overlap and
any point (x̂, ŷ) belongs to at least one zone.
Step 5 The displacement line, proof of (1.27). We invest here the properties of y∗
defined by (5.38). The analogue of (B.14) adapts, namely,

y∗(x) = k−1
6

Y	(aout , bout )

t
1
4

(
1 + O

(
t
1
12 + |X| 1

18 t
1
12

))
.

By definition, as bout = δt−3/4,

Y	(aout , bout ) =
∫ δt−3/4

−∞
db̃

1 + 3�2
1

(
p∗
(
X− b̃2

)) = 2Y∗(X) + O
(
t
1
4

)
,

as for b � δt−3/4 it holds that |X| � b for ε small enough, so that �2
1

(

p∗
(

X

− b̃2
))

≈ b4/3 from (3.14). Therefore, from (5.4),

y∗(x) = k−1
6

2Y∗
(

k5(x−x∗)
t
3
2

)

t
1
4

(
1 + O

(
t
1
12 + |x | 1

18

))

=
2Y∗

μ,ν,ι

(
x−x∗

t
3
2

)

t
1
4

(
1 + O

(
t
1
12 + |x | 1

18

))
.

This shows (1.27).
Step 6 Reconnection functions: proof of (1.33). The reconnection functions f
and g are defined the following way. Fix t = T , and consider the curve 
 :=
{x(T, X,Y ) = x∗(T )}. We split it in two parts. 
bot is the bottom part which goes
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from the boundary of the upper half plane to (X0,Y0), and 
top which is the top
part from (X0,Y0) and beyond. We change variables, using (5.3), to get

(
A
B

)

=
(

k1 k2
−k3 k4

)(
X − X0
Y − Y0

)

,

so that from the Taylor expansion of x (5.17), for |A|, |B| � 1,

x(T, X,Y ) = x∗(T ) + p∗2A3 + B2 + O(|A|4 + |A||B|2 + |B|3),
which extends naturally to higher order derivatives. Therefore, near (X0,Y0), on 


one has that

A = − 1

p∗ 2
3

B
2
3

(
1 + O

(
|B| 23

))
. (5.73)

Denote by (X∗
0, 0) the point of the boundary such that x(T, X∗

0, 0) = x∗(T ), by
(Xin,Yin) that for which B = −δ, and by (Xout ,Yout ) that for which B = δ. On

bot for |B| � 1 and B < 0 we compute y using (A.1) and split to get

y =
∫



(X1,Y1)

(X∗
0 ,0)

ds

|∇x(T )| + k−1
6

∫ B

−δ

d B̃

∂Ax

= O(1) + 1

k63p∗ 2
3

∫ B

−δ

(
1 + O

(
|B̃| 23

))
d B̃

B̃
4
3

= O(1) − 1

k6 p∗ 2
3

1

B
1
3

.

This shows that y → ∞ as (X,Y ) approaches (X0,Y0) on 
b. Given any y � 0,
there thus exists a unique pointφ(y) on
b between the boundary ofHand (X0,Y0)
such that y(X,Y ) = y and we define can

f (y) = u(T, φ(y)).

From the above expansion for y one obtains, writing φ(y) in (A, B) variables, that

B(φ(y)) ∼ − 1

y3k36 p
∗2 as y → ∞,

which, from (5.49), (5.73) and (5.6), gives,

f (y) − u∗ = u(T, φ(y)) − u∗ ∼ −uXk1
y2k26 p

∗2 = 1

y2
μν2

p∗2 as y → ∞,

and the first part of (1.33) is proved. For (X,Y ) ∈ 
top, we define

ỹ(X,Y ) =
∫



(X,Y )
(Xout ,Yout )

ds

|∇x[T ]| ,
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where this integral is taken with positive sign if (X,Y ) is after (Aout , Bout ) on 
,
and with negative sign if it is between (Aout , Bout ) and (X0,Y0). It follows from
(5.73) that

ỹ(Aout , Bout ) = 0, lim
(X,Y )∈
top, |(X,Y )|→∞ ỹ(X,Y ) = ∞,

ỹ ∼ − 1

k6 p∗ 2
3

1

B
1
3

as B → 0+.

Hence (X,Y ) �→ ỹ defines a C3 diffeomorphism between 
top and R. Given any
ỹ ∈ R, there exists a unique point φ̃(ỹ) on 
top such that ỹ(φ̃(ỹ)) = ỹ and we thus
define

g(ỹ) = u(T, φ̃(ỹ)). (5.74)

From (5.49) and (5.73) one obtains

g(ỹ) − u∗ ∼ −uXk1
y2k26 p

∗2 = 1

y2
μν2

p∗2 as y → −∞.

Denoting by XE �→ x E the Lagrangian to Eulerian map of the Bernouilli equation
(1.2) (with ẋ E = uE (t, x E ) and x E (0, XE ) = XE ) then, at time T , x E [T ] is a
diffeomorphism since (uE , pE ) is a globally regular solution of (1.2). From the
second equation in (1.1), we get that for ỹ → ∞, X (φ̃(ỹ)) → XE (T, x∗(T )).
Hence g(ỹ) → uE (x∗(T )) as ỹ → ∞. This and the above equation proves the
second identity in (1.33).
Step 7Reconnection: proof of (1.34) inZbe, (1.35) inZab, (1.31) and (1.32) inZto.
For any Kbo > 0, as (t, x) → (T, x∗), the characteristics map (X,Y ) �→ (x, y)
still defines a diffeomorphism when restricted to the preimage of y < Kbo, since
it avoids a size one zone near (X0,Y0). Hence the convergence of u to f in Zbe

follows from a direct continuity argument. This shows the reconnection at the
bottom (1.34).

Wenow turn to the reconnection at the top. For any Kto > 0, the zone y∗−Kto �
y � y∗ + Kto corresponds in Lagrangian variable to a zone which stays at a
distance 1 away from (X0,Y0), and hence where the parametrisation of the curves

 := {x(X,Y ) = Cte} and ∇x remain uniformly regular as t → T . From this fact
and the definition (5.38) of y∗, as (x, t) → (T, x∗), the inverse of the characteristics
map (x, y) �→ (X,Y ) is such that

(X,Y )(x, y) → φ̃(y − y∗)

where φ̃ is defined by (5.74). Hence from (5.74) one has u(t, X,Y ) → g(y−y∗(x))
in this zone which proves (1.35) for y∗ − Kto � y � y∗ + Kto. For y � y∗ + Kto,
we have that X → XE (T, x∗(T )) where XE is defined in Step 6, and Y → ∞,
uniformly as Kto → ∞ for |x − x∗| � ε. Thus u(t, x, y) → uE (T, x∗(T ))

uniformly. This proves (1.35) for y � y∗ + Kto since g(ỹ) → uE (T, x∗(T )) for
ỹ → ∞. Hence (1.35) is proved.
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We now turn to the convergence in the top part of the self-similar zone Zto. Let
Kto � 1 be large, and then 0 < κto, ε � 1 be small, and consider (x̂, ŷ) ∈ Zto,
corresponding to

|X̂| � k5εt−
3
2 , k6t

1
4 y∗(t, x)(1 − κto) � Ŷ� k6t

1
4 (y∗(x) − Kto), (5.75)

Define b as follows
b = M

(
1 + |X̂| 12

)
.

Here, M � 1 will be chosen later on. One has for ε small enough depending on
δ that |b| � |X̂|1/2. We now look for the solution a to X(a, b) = X̂. In the zone
a < 0with |a| ≈ |b|2/3 one is in Z1 and therefore from (5.20) one has ∂aX≈ |b|4/3.
Hence, as |X| � |b|2 this condition on the derivative via the intermediate value
Theorem implies that there exists a < 0 with |a| ≈ |b|2/3 such that X(a, b) = X̂.
From Lemma 5.3, the curve 
[x̂], before leaving Zc

0 by the point (aout , bout ), is in
Z1 where it can be parametrised with the variable b̃ as ã = ã(X, b̃). Either in case
(i) of Lemma 5.3 it always stayed in Z1, or in case (ii) before that stage the curve
was in Z2.

As (a, b) belongs to Z1, this means that in any case, one can parametrise with
the variable b̃ the last part of 
 before exiting Zc

0, as a curve ã = ã(X, b̃) for
b � b̃ � δt3/4. For (a, b) along this curve it holds, by definition of y∗ (5.38), that

X(a, b) = X̂, Y(a, b) = k6t
1
4 y∗(x̂) −

∫ δ

t3/4

b

db̃

∂aX(ã(X̂, b), b̃)
.

As this curve lies in Z1 from (5.20), and from the inequality |X̂| � |b̃| for b �
b̃ � δt−3/4,

Y(a, b) = k6t
1
4 y∗(x̂) −

∫ δ

t3/4

b

db̃

1 + 3�2
1

(
p∗(X̂− b̃2)

)
(
1 + O

(
|b̃| 19 t 1

12

))
.

An expansion at infinity of �1 gives that

1

1 + 3�2
1

(
p∗(X̂− b̃2)

)
(
1 + O

(
|b̃| 19 t 1

12

))
= 1

p∗ 2
3 3b̃

4
3

+ O

(
t
1
12 |b̃| 19
|b̃| 43

+ |X̂||b̃|−2

|b̃| 43

)

,

so that

Y(a, b) = k6t
1
4 y∗(t, x̂) − k6

p∗ 2
3 b

1
3

+ O
(
|b|− 1

3+ 1
9 t

1
12 + |b|− 1

3−2|X̂|
)

.

We write Y= k6t1/4y∗(t, x̂) − �Y, and from (5.75) and (1.27),

k6t
1
4 K � �Y� k6κ

1 + |X̂| 16
.
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Solving Y(a, b) = Y then amounts to solving

− 1

p∗ 2
3 b

1
3

+ O
(
|b|− 1

3+ 1
9 t

1
12 + |b|− 1

3−2|X̂|
)

= −�Y.

For b = δt−3/4 one has b−1/3 � t1/4δ−1/3 � t
1
4 Kto for δ small enough, and

for b = b one has b
−1/3 � M−1/3(1 + |X|1/6)−1 � κto(1 + |X|1/6)−1 for M

large enough. Hence, there exists indeed a solution (â, b̂) to the above equation
by the intermediate value Theorem, and bootstrapping information from the above
equation and using that |X̂| ≈ |b̂|2 one obtains

b̂ = 1

p∗2k36
(
y∗(t, x̂) − ŷ

)3 t
3
4

(

1 + O

(
1

(y∗(x̂) − ŷ)
1
3

))

. (5.76)

Bootstrapping information from the equation (5.12) gives, finally that

â = −p∗− 2
3 b̂

2
3

(

1 + O

(
|X̂|
b̂2

+ t
1
12 |b̂| 19

))

= − 1

k26 p
∗2(y∗(t, x̂) − ŷ)2t

1
2

(

1 + O

(
|ŷ − y∗(t, x̂)|

y∗(t, x̂)
+ 1

(ŷ − y∗(t, x̂)) 1
4

))

.

Hence, from (5.49) and (5.6),

u(t, x̂, ŷ) − u∗(t) = μν2

p∗2(y∗(t, x̂) − ŷ)2

(

1 + O

(
|ŷ − y∗|

y∗ + 1

(ŷ − y∗) 1
4

))

.

The estimates for the derivative proved in Lemma 5.4 adapt, namely at the point
(â, b̂), such that (x, y)(â, b̂) = (x̂, ŷ), using (5.76)

∂aX= 1 + 3p∗2â2 + O(|b̂| 53 t 14 ) = ∂aX
	 + O

(
(y∗ − ŷ)

(y∗ − ŷ)4t

)

,

∂bX= 2b + O(t
1
4 |b̂| 43 ) = ∂bX

	 + O

(
(y∗ − ŷ)−1

(y∗ − ŷ)3t
3
4

)

,

∂aY= ∂aY
	 + O(t

1
12 |b̂|−1+ 1

9 ) = ∂aY
	 + O

(
(y∗ − ŷ)3−

1
3 t

3
4

)
,

∂bY= ∂bY
	 + O

(
|1 + |X̂||− 7

6 |b̂|1+ 1
9 t

1
12

)
= ∂bY

	 + O
(
(y∗ − ŷ)4−

1
3 t
)

,
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so that, from (5.50), (5.51), (5.33), (5.34), (iii) in Proposition 1 and the above
estimates, we have

∂Xu = ∂au∂bY− ∂bu∂aY

= −t
1
2 (2∂bY

∗(X	) + ∂b(2Y
∗(X	) − ∂bY

	))

+O
(
t
3
2 |t 32 + |x̂ − x∗||− 7

6 |y∗ − ŷ|−3− 1
3

)

= −t
1
2 4b∂XY∗ + O(t−

1
4 |y − y∗|4)

+O
(
t
3
2 |t 32 + |x̂ − x∗||− 7

6 |y∗ − ŷ|−3− 1
3

)
,

∂Yu = −∂au∂bX+ ∂bu∂aX= − 1

t
1
4 p∗2k36(y∗ − y)3

+ O

(
(y∗ − ŷ)

(y∗ − ŷ)3t
1
4

)

,

which, using (5.6), completes the proof of (1.32). ��
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A. Parametrisation and volume preservation

Lemma A.1. Let � ⊂ R
2 be open, and f = ( f1, f2) ∈ C1(�,R2) be such that

∇ f1 �= 0 on �, and that for each q in the range of f1, the level set 
[q] = {z ∈
�, f1(z) = q} is diffeomorphic to R. Then
(i) Let γ : O → � be a diffeomorphism between an open set O ⊂ R

2 and �,
such that for each q ∈ R, γ (q, ·) is an arclength parametrisation of 
[q]. Then
f preserves volume if and only if for all q in the range of f1, and any two
z = γ (q, s) and z′ = γ (q, s′) it holds that

| f2(z) − f2(z
′)| =

∣
∣
∣
∣
∣

∫ s′

s

ds̃

|∇ f1(γ (q, s̃))|

∣
∣
∣
∣
∣
. (A.1)

(ii) If ∂z1 f1 �= 0 on�, let z̃1 : O→ � be the only diffeomorphism between an open
set O ⊂ R

2 and �, such that for each q ∈ R, z̃1(q, ·) is the parametrisation
of 
[q] by the second component, i.e. 
[q] = {(z̃1(q, z̃2), z̃2), (q, z̃2) ∈ O},
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then f preserves volume if and only if, for all q in the range of f1, and any two
z = (z̃1(q, z2), z2) and z′ = (z̃1(q, z′2), z′2),

| f2(z) − f2(z
′)| =

∣
∣
∣
∣
∣

∫ z′2

z2

dz̃2
∂z1 f1(z̃1(q, z̃2), z̃2)

∣
∣
∣
∣
∣
. (A.2)

Proof. Proof of (i). We denote by γ −1 = (q, s) : � → O the inverse of γ ,
and note that q = f1. At a point z ∈ �, considering the orthonormal vec-
tors v1 = ∇ f1(z)|∇ f1(z)|−1 and v2 = ∇⊥ f1(z)|∇ f1(z)|−1 where (e1, e2)⊥ =
(−e2, e1) we get the identities ∇q.v1 = |∇ f1(z)|, ∇q.v2 = 0 and ∇s.v2 = 1.
This implies |Det (Jγ −1

) | = |∇ f1(z)|. Consider now the mapping φ : (q, s) �→
(q, f2(γ (q, s)). Since ∂q

∂s |q = 0 and ∂q
∂q |s = 1 we have |Det (Jφ) | = | ∂ f2

∂s |q |. Since
f = φ ◦γ −1, we get from the two previous computations that f preserves volume,
that is, |DetJ f | = 1, if and only if

|∂ f2
∂s |q

| = 1

|∇ f1(z)| .

This is equivalent to (i) upon integrating, and noticing that these quantities cannot
change sign.
Proof of (ii). From the assumptions on f , there always exists a parametrisation by
arclength of the level sets γ : O′ → � satisfying the properties of (i). We change
variables z̃−1

1 ◦γ : (q, s) �→ (q, z̃2). Differentiating the identity f1(z̃1(q, z̃2), z̃2) =
q we find ∂ z̃1

∂z̃2 |q
= −∂z2 f1/∂z1 f1. Hence

| ∂s

∂ z̃2 |q
| =
√

1 +
(

∂z2 f1
∂z1 f1

)2

= |∇ f1|
|∂z1 f1|

.

Changing variables s �→ z̃2 in (A.1), then yields that f preserves volume if and
only if (A.2) holds true. ��

B. Computing the normal component of the characteristics

proof of Lemma 5.4. At several moments in the proof, we will use the following:
the function �1 enjoys

c <

∣
∣
∣
∣
X∂X�1(X)

�1(X)

∣
∣
∣
∣ �

1

c
, |�1(X)| � |X | 13 ,

�1(X + X ′) = �1(X) + O
(
|X ′| 13

)
(B.1)

uniformly for X, X ′ ∈ R. From the first bound above, given a small quantity O(|z|)
that has size |z|, as an application of the implicit function theorem, it is true that

�1 (X (1 + O(|z|))) = �1 (X) (1 + O(|z|)), (B.2)
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where the “new” O(|z|) in the right hand side enjoys the same differentiability
properties and similar bounds, as the one in the left hand side. To rearrange the
O()’s in what follows, we shall simplify O(|z1|) + O(|z2|) = O(|z2|) in zones
where |z1| � |z2|, and O(|z|α) = O(|z|β) if 0 < β � α as all quantities in the
O()’s will be small.
To compute the vertical component, we will use the following result. Assume that
(a, b) and (a′, b′) belong to the same level set curve
[x] = {x(ã, b̃) = x}. Assume
that, when ordering points on 
 with their distance to the boundary, (a′, b′) is after
(a, b), and that either b � b′ or a � a′. Assume moreover that 


(a′,b′)
(a,b) , the part

of 
 between (a, b) and (a′, b′), can be either parametrised with the variable b̃ as
ã = ã(X, b̃) for b � b̃ � b′ or with the variable ã as b̃ = b̃(X, ã) for a � ã � a′.
Then by applying Lemma A.1 and (5.5) one obtains the following identities:

∫



(a′,b′)
(a,b)

ds

|∇x | = 1

k6t
1
4

∫ b′

b

db̃

|∂aX| or
∫



(a′,b′)
(a,b)

ds

|∇x | = 1

k6t
1
4

∫ a′

a

db̃

|∂bX| . (B.3)

Step 1 The normal component for left part of the sides, the core, and the bottom,
of the self-similar zone. We first derive rough estimates that will be used in the
next steps. Fix (X, Y ) ∈ Zc

0 such that either −ε � x(a, b) − x∗ � K t3/2, or,
K t3/2 � x − x∗ � ε and b < 0 and N2|X| � |b|2. Note that in the second case,
from (5.11), one has necessarily |a| ≈ |b|2/3 � 1. Let
 denote the part of the curve

[x] which joins the boundary of the upper half plane and (X,Y ). We decompose
it in two parts:


1 := 
 ∩ Z0, 
2 = 
 ∩ Zc
0, Y= k6t

1
4

(∫


1

ds

|∇x | +
∫


2

ds

|∇x |
)

. (B.4)

The integral in Z0 is at distance one to (X0,Y0), and everything then remains
regular:

∫


1

ds

|∇x | = O(1), ∂X

(∫


1

ds

|∇x |
)

= O
(
t
3
2

)
. (B.5)

In Zc
0, from Lemma 5.3 the curve 
[x] lies in Z1, so it can be parametrised with

the variable b̃. Also, from (B.3), (5.20) and, as |b̃|t3/4 � 1 for −δt−3/4 � b̃ � b,

k6t
1
4

∫


2

ds

|∇x | =
∫ b

− δ

t
− 3
4

db̃

∂aX
=
∫ b

− δ

t
− 3
4

1 + O
(
t
1
12 + |b̃| 13 t 14 + |X| 16 t 14

)

1 + 3�2
1 (p

∗(X− b̃2))
db̃

=
∫ b

−∞

1 + O
(
t
1
12 + |b̃| 14 t 3

16 + |X| 16 t 14
)

1 + 3�2
1 (p

∗(X− b̃2))
db̃ + O

(∫ − δ

t
− 3
4

−∞
db̃

|b̃| 43

)

=
∫ b

−∞

1 + O
(
t
1
12 + |b̃| 14 t 3

16 + |X| 16 t 14
)

1 + 3�2
1 (p

∗(X− b̃2))
db̃ + O

(
t
1
4

)
, (B.6)
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where we used the fact that |X| � εt−3/2, and that for b̃ � −δt−3/4, b̃2 � X if ε

is small enough, implying �2
1 (p

∗(X− b̃2)) ≈ |b̃|4/3. Hence, injecting (B.5) and
(B.6) in (B.4),

Y(a, b) =
∫ b

−∞

1 + O
(
t
1
12 + |b̃| 14 t 3

16 + |X| 16 t 14
)

1 + 3�2
1 (p

∗(X− b̃2))
db̃ + O

(
t
1
4

)
. (B.7)

We now study the derivative of Y. AsX(ã, b̃) = Xis inverted through ã = ã(X, b̃)
one has

∂

∂X|b̃

(
ã(X, b̃)

)
= 1

∂aX(ã(X, b̃), b̃)
,

∂

∂X|b̃

(
1

∂aX(ã(X, b̃), b̃)

)

= − ∂aaX(ã(X, b̃), b̃)

(∂aX(ã(X, b̃), b̃))3

One deduces from (B.3), (5.20), (5.21) that

∂

∂X|b

(

k6t
1
4

∫


2

ds

|∇x |
)

= ∂

∂X|b

(∫ b

− δ

t3/4

db̃

∂aX(ã(X, b̃), b̃)

)

= −
∫ b

− δ

t3/4

∂aaX(ã, b̃)db̃

(∂aX(ã, b̃))3

= 6p∗
∫ b

− δ

t3/4

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗(X− b̃2)

))3

(
1 + O

(
t
1
12 + |X| 16 t 14 + |b̃| 13 t 14

))
db̃

+
∫ b

− δ

t3/4

O
(
t
1
12

)

(
1 + 3�2

1

(
p∗(X− b̃2)

))3 db̃.

Note that in the integrals above, for b̃ � −δt−3/4 there holds �1(p∗(X− b̃2)) �
b̃2/3. Hence, integrating from infinity instead of −δt−3/4 produces an error which
is O(t7/4) and

∂

∂X|b

(

k6t
1
4

∫


2

ds

|∇x |
)

= 6p∗
∫ b

−∞

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗(X− b̃2)

))3

(
1 + O

(
t
1
12 + |X| 16 t 14 + |b̃| 14 t 3

16

))
db̃

+
∫ b

−∞

O
(
t
1
12

)

(
1 + 3�2

1

(
p∗(X− b̃2)

))3 db̃ + O
(
t
7
4

)
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Therefore, injecting (5.20), (B.5) and the above identity in (B.4), we get

∂aY(a, b) = ∂aX

(

k6t
1
4

∂

∂X

∫


1

ds

|∇x | + ∂

∂X|b

(

k6t
1
4

∫


2

ds

|∇x |
))

= ∂aX

(

6p∗
∫ b

−∞

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗(X− b̃2)

))3

(
1 + O

(
t
1
12 + |X| 16 t 14 + |b̃| 14 t 3

16

))
db̃

+
∫ b

−∞

O
(
t
1
12

)

(
1 + 3�2

1

(
p∗(X− b̃2)

))3 db̃ + O
(
t
7
4

))

= 6p∗ (1 + 3�2
1

(
p∗ (X− b2

)))

(∫ b

−∞

O
(
t
1
12

)

(
1 + 3�2

1

(
p∗(X− b̃2)

))3 db̃ + O(t
7
4 )

+
∫ b

−∞

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗(X− b̃2)

))3

(
1 + O

(
t
1
12 + |X| 16 t 14 + |b̃| 14 t 3

16 + t
1
4 |b| 13

))
db̃

)

. (B.8)

The estimates (5.27) and (5.28), and (1.17), prove (5.27) and (5.28) for the first
case.
Step 2 The normal component for the sides of the self-similar zone. We now
prove the estimates (5.30) and (5.31) in the second case described by (5.29). The
parametrisation of the curve 
[x] has to be done more carefully. In the case of the
left side, i.e. x < 0, we are in the case considered in Step 1, which has already been
covered. In the case of the right side, i.e. x > 0, we are in case (ii) of Lemma 5.3,
and then inside Zc

0, the curve
 can be decomposed in five curves,
i for i = 1, ..., 5
that enjoy the properties described there. We use different variables to parametrise
the curves 
i , applying Lemma 5.3. On 
1 we use the variable b̃, on 
2 ã, on 
3
b̃, on 
4 ã and on 
5 b̃. Without loss of generality for the argument, we assume
that (a, b) is located on 
2. Indeed, treating the case of three or more different
parametrisation can be done the very same way. We consider a point (a, b) close
to (a, b), which still belongs to 
2 (up to changing slightly the constants in the
definition of Z1 and Z2). We denote by 
0 the part of the curve outside Zc

0. Hence,
from (B.3),

Y= k6t
1
4

∫


0

ds

|∇x | +
∫ b1

− δ

t3/4

db̃

∂aX
+
∫ a

a1

dã

∂bX
, (B.9)
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where we recall that (a1, b1) is the endpoint of 
1 and the starting point of 
2,
defined in Lemma 5.3. The integral over 
0 is at distance one to (X0,Y0) and
hence, in a zone where everything remains regular,

∫


0

ds

|∇x | = O(1), ∂X

(∫


0

ds

|∇x |
)

= O
(
t
3
2

)
. (B.10)

We now consider the second integral, corresponding to the part 
1 of the curve
joining the points (ain,−δt−3/4) and (a1, b1). Since this part is in Z1, one obtains
from (5.20), injecting (5.67), that

∫ b1

− δ

t3/4

db̃

∂aX
=
∫ b1

− δ

t3/4

db̃

1 + 3�2
1 (p

∗(X− b̃2))
(
1 + O

(
t
1
12 |X| 1

18 + t
1
12 |b̃| 19

))
(B.11)

We turn to the third integral, corresponding to the part 
2 of the curve joining the
points (a1, b1) and (a, b). There, since this part is in Z2, one obtains from (5.23)
that ∫ a

a1

dã

∂bX
=
∫ a

a1

dã

2
√
X− ã − p∗2ã3

(
1 + O

(
|X| 16 t 14

))
.

In Z2, one has from (5.10) that |ã| � |b̃|2/3 and |b̃| � 1, so that from (5.11) one
has

X≈ |b̃|2 � |ã|3 and
√

X− ã − p∗2ã3 ≈ X1/2 (B.12)

uniformly for ã in Z2, as well as |a1|, |a| � X1/3. Using these bounds, one infers
from the above identity that

∫ a

a1

dã

∂bX
=
∫ a

a1

dã

2
√
X− ã − p∗2ã3

+ O

(
|a − a1|
|X| 12

|X| 16 t 14
)

=
∫ a

a1

dã

2
√
X− ã − p∗2ã3

+ O
(
|X|− 1

6+ 1
6 t

1
4

)
.

Also, from the identity (5.15), using the above bound (B.12),
∣
∣
∣
∣a + 1

p∗ �1

(
p∗ (X− b2

))∣∣
∣
∣+
∣
∣
∣
∣a + 1

p∗ �1

(
p∗ (X− b2

))∣∣
∣
∣ � |X| 13+ 1

18 t
1
12 ,

∣
∣
∣
∣
∣

∫ − 1
p∗ �1

(
p∗(X−b2

))

a

dã
√
X− ã − p∗2ã3

∣
∣
∣
∣
∣

�

∣
∣
∣a + 1

p∗ �1
(
p∗ (X− b2

))∣∣
∣

|X| 12
� |X|− 1

6+ 1
18 t

1
12 ,

∣
∣
∣
∣
∣

∫ − 1
p∗ �1

(
p∗(X−4b21

))

a1

dã
√
X− ã − p∗2ã3

∣
∣
∣
∣
∣

�

∣
∣
∣a1 + 1

p∗ �1
(
p∗ (X− 4b21

))∣∣
∣

|X| 12
� |X|− 1

6+ 1
18 t

1
12 . (B.13)
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Therefore

∫ a

a1

dã

∂bX
=
∫ − 1

p∗ �1
(
p∗(X−b2

))

− 1
p∗ �1

(
p∗(X−4b21

))

dã

2
√
X− ã − p∗2ã3

+ O
(
|X|− 1

6+ 1
18 t

1
12

)
.

We now change variables in the above integral, taking b̃ = −√X− ã − p∗2ã3.
The left and right endpoints of the integral are precisely b1 and b, and this produces

ã = − 1

p∗ �1

(
p∗(X− b̃2)

)
, db̃ = 1

2

1 + 3p∗2ã2
√
X− ã − p∗2ã3

dã,

∫ a

a1

dã

∂bX
=
∫ b

b1

db̃

1 + 3�2
1

(
p∗
(
X− b̃2

)) + O
(
|X|− 1

6+ 1
18 t

1
12

)
.

We inject the identities (B.10), (B.11) and the above identity in the expression (B.9),
giving the following expression for Y:

Y=
∫ b

− δ

t
3
4

db̃
(
1 + O

(
|X| 1

18 t
1
12 + |b̃| 19 t 1

12

))

1 + 3�2
1

(
p∗
(
X− b̃2

)) + O
(
|X|− 1

6+ 1
18 t

1
12

)

= Y	(a, b)
(
1 + O

(
t
1
12 |X| 1

18

))
. (B.14)

Here we used (5.36). This shows the first desired bound in (5.30). We now consider
the derivatives of Y. The point (a1, b1) changes as X changes, but the identity
X(a1, b1) = X(a, b) ensures that

∂Xa1∂aX(a1, b1) + ∂Xb1∂bX(a1, b1) = 1. (B.15)

Hence, differentiating the sumof the two leading order integrals in (B.9) one obtains

t
1
4 k6∂a

(∫


1

ds

|∇x | +
∫


2

ds

|∇x |
)

= ∂a

(∫ b1(a,b)

− δ

t3/4

db̃

∂aX(ã(X, b̃), b̃)
+
∫ a

a1(a,b)
− dã

∂bX(ã, b̃(X, ã))

)

= ∂aX(a, b)
(∫ b1

− δ

t3/4

∂X

(
1

∂aX(ã(X, b̃), b̃)

)

db̃ +
∫ a

a1
∂X

(

− 1

∂bX(ã, b̃(X, ã))

)

dã

+ ∂Xb1
∂aX(a1, b1)

+ ∂Xa1
∂bX(a1, b1)

)

− 1

∂bX(a, b)

= ∂aX(a, b)
(∫ b1

− δ

t3/4

−∂aaX(ã(X, b̃), b̃)db̃
(
∂aX(ã(X, b̃), b̃)

)3 +
∫ a

a1

∂bbX(ã, b̃(X, ã))dã
(
∂bX(ã, b̃(X, ã))

)3
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+ 1

∂aX(a1, b1)∂bX(a1, b1)

)

− 1

∂bX(a, b)
. (B.16)

The first integral is located in Z1 with |a| � 1, hence from (5.20) and (5.21),

∫ b1

− δ

t3/4

−∂aaX
(
ã(X, b̃), b̃

)

(
∂aX

(
ã(X, b̃), b̃

))3 db̃

= 6p∗
∫ b1

− δ

t3/4

�1

(
p∗
(
X− b̃2

)) (
1 + O

(
t
1
12 |X| 1

18 + t
1
12 |b̃| 19

))

(
1 + 3�2

1

(
p∗
(
X− b̃2

)))3 db̃.

(B.17)

The second integral is located in Z2, hence from (5.23) and (5.24),

∫ a

a1

∂bbX
(
ã, b̃(X, ã)

)

(
∂bX

(
ã, b̃(X, ã)

))3 dã = −1

4

∫ a

a1

1 + O
(
|X| 16 t 14

)

(
X− ã − p∗2ã3

) 3
2

dã.

From (B.12), (B.13),

∫ a

a1

∂bbX
(
ã, b̃(X, ã)

)

(
∂bX

(
ã, b̃(X, ã)

))3 dã

= −1

4

∫ − 1
p∗ �1

(
p∗(X−b2

))

− 1
p∗ �1

(
p∗(X−4b21

))

dã
(
X− ã − p∗2ã3

) 3
2

+ O

(

|a − a1| |X| 16 t 14
|X| 32

)

+O

⎛

⎝

∣
∣
∣
∣
∣
∣

∣
∣
∣a + 1

p∗ �1
(
p∗ (X− b2

))∣∣
∣+
∣
∣
∣a1 + 1

p∗ �1
(
p∗ (X− 4b21

))∣∣
∣

|X| 32

∣
∣
∣
∣
∣
∣

⎞

⎠

= −1

4

∫ − 1
p �1

(
p∗(X−b2

))

− 1
p∗ �1

(
p∗(X−4b21

))

dã
(
X− ã − p∗2ã3

) 3
2

+ O
(
|X|− 7

6+ 1
18 t

1
12

)
.

We now change variables, taking b̃ = −√X− ã − p∗2ã3. Note that this change
of variables ensures X	(ã, b̃) = ã + p∗2ã3 + b̃2 = Cte = X, and

−1

4

1
(
X− ã − p∗2ã3

) 3
2

= ∂bbX
	

(∂bX	)3
.

There holds in this case a general formulawhen integrating on the curve {X(a, b) =
Cte}, obtained by performing a change of variables and an integration by parts (note
the signs ∂aX

	 > 0 and ∂bX
	 < 0 in the present case):

∫ a2

a1

∂bbX
	

(∂bX	)3
da = −

∫ b2

b1

∂bbX
	db

(∂bX	)2∂aX	
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= −
∫ b2

b1

(
d

db
∂bX

	 + ∂bX
	

∂aX	
∂baX

	

)
db

(∂bX	)2∂aX	

= −
∫ b2

b1

d

db
(∂bX

	)
1

(∂bX	)2∂aX	
db −

∫ b2

b1

∂abX
	

∂bX	(∂aX	)2

= −
∫ b2

b1

d

db

(

∂bX
	 1

(∂bX	)2∂aX	

)

da

+
∫ b2

b1
∂bX

	 d

db

(
1

(∂bX	)2∂aX	

)

db

−
∫ b2

b1

∂abX
	db

∂bX	(∂aX	)2

= − 1

∂aX	(a2, b2)∂bX	(a2, b2)
+ 1

∂aX	(a1, b1)∂bX	(a1, b1)

− 2
∫ b2

b1

(

∂bbX
	 − ∂bX

	

∂aX	
∂abX

	

)
1

(∂bX	)2∂aX	
db

−
∫ b2

b1

(

∂abX
	 − ∂bX

	

∂aX	
∂aaX

	

)
1

∂bX	(∂aX	)2
db

−
∫ b2

b1

∂abX
	

∂bX	(∂aX	)2

= − 1

∂aX	(a2, b2)∂bX	(a2, b2)
+ 1

∂aX	(a1, b1)∂bX	(a1, b1)

+ 2
∫ a2

a1

∂bbX
	

(∂bX	)3
da +

∫ b2

b1

∂aaX
	

(∂aX	)3
db,

from which one deduces the change of parametrisation identity

∫ a2

a1

∂bbX
	

(∂bX	)3
da = 1

∂aX	(a2, b2)∂bX	(a2, b2)
− 1

∂aX	(a1, b1)∂bX	(a1, b1)

−
∫ b2

b1

∂aaX
	

(∂aX	)3
db.

Applied to our case, this produces, noticing that the endpoint, are (a1, b1) and
(a, b),

−1

4

∫ − 1
p∗ �1

(
p∗(X−b2

))

− 1
p∗ �1

(
p∗(X−4b21

))

1
(
X− ã − p∗2ã3

) 3
2

dã

= 1

∂aX	(a, b)∂bX	(a, b)
− 1

∂aX	(a1, b1)∂bX	(a1, b1)
−
∫ b

b1

∂aaX
	

(∂aX	)3
db̃

= 1

(1 + 3p∗2a2)2b
− 1

(1 + 3p∗2a21)2b1
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+6p∗
∫ b

b1

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗
(
X− b̃2

)))3 db̃.

Note that, since (a1, b1) belong to both Z1 and Z2, from (B.12), (5.23) and (5.20),

1

∂aX(a1, b1)∂bX(a1, b1)
=

1 + O
(
|X| 16 t 14

)

(
1 + 3p∗2a21

)
2b1

= 1
(
1 + 3p∗2a21

)
2b1

+ O
(
|X|− 7

6+ 1
6 t

1
4

)
,

so that

∫ a

a1

∂bbX
(
ã, b̃(X, ã)

)

(
∂bX

(
ã, b̃(X, ã)

))3 dã = 1

(1 + 3p∗2a2)2b
− 1

∂aX(a1, b1)∂bX(a1, b1)

+6p∗
∫ b

b1

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗
(
X− b̃2

)))3 db̃

+O
(
|X|− 7

6+ 1
18 t

1
12

)
.

From the above identity and (B.17) one concludes that

∫ b1

− δ

t3/4

−∂aaX
(
ã(X, b̃), b̃

)

(
∂aX

(
ã(X, b̃), b̃

))3 db̃ +
∫ a

a1

∂bbX
(
ã, b̃(X, ã)

)

(
∂bX

(
ã, b̃(X, ã)

))3 dã

+ 1

∂aX(a1, b1)∂bX(a1, b1)

= 6p∗
∫ b

− δ

t3/4

�1

(
p∗
(
X− b̃2

)) (
1 + O

(
t
1
12 |X| 1

18 + t
1
12 |b̃| 19

))

(
1 + 3�2

1

(
p∗
(
X− b̃2

)))3 db̃

+ 1

(1 + 3p∗2a2)2b
+ O

(
|X|− 7

6+ 1
18 t

1
12

)

From (5.37), and using the fact that for b̃ � −δt3/4, one has |�1

(
p∗
(
X− b̃2

))
| ≈

|b̃|2/3, and
∫ b

− δ

t3/4

�1

(
p∗
(
X− b̃2

)) (
1 + O

(
t
1
12 |X| 1

18 + t
1
12 |b̃| 19

))

(
1 + 3�2

1

(
p∗
(
X− b̃2

)))3 db̃

=
∫ b

−∞

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗
(
X− b̃2

)))3 db̃ + O
(
|X|− 7

6+ 1
18 t

1
12

)
.
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Therefore

∫ b1

− δ

t3/4

−∂aaX
(
ã(X, b̃), b̃

)

(
∂aX

(
ã(X, b̃), b̃

))3 db̃ +
∫ a

a1

∂bbX
(
ã, b̃(X, ã)

)

(
∂bX

(
ã, b̃(X, ã)

))3 dã

+ 1

∂aX(a1, b1)∂bX(a1, b1)

=
∫ b

−∞

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗
(
X− b̃2

)))3 db̃ + 1

(1 + 3p∗2a2)2b

+O
(
|X|− 7

6+ 1
18 t

1
12

)
(B.18)

Since (a, b) is in Z2, from (B.12), (5.23) and (5.20),

∂aX(a, b)

(1 + 3p∗2a2)2b
= 1

∂bX(a, b)
+ O

(
|X|− 1

2+ 1
6 t

1
4

)
.

Injecting the two identities above, (B.17) and |∂aX| � |X|2/3 in the identity (B.16)
gives

t
1
4 k6∂a

(∫


1

ds

|∇x | +
∫


2

ds

|∇x |
)

= 6p∗∂aX(a, b)
∫ b

−∞

�1

(
p∗
(
X− b̃2

))
db̃

(
1 + 3�2

1

(
p∗
(
X− b̃2

)))3

+O
(
|X|− 1

2+ 1
18 t

1
12

)

From this identity, (B.9), (B.10) and (5.68), we have proved that

∂aY= ∂aY
	 + O

(
|X|− 1

2+ 1
18 t

1
12

)
,

which is the second identity in (5.30) that we had to show.We now turn to the partial
derivativewith respect tob. From (B.9) and (B.15), and then injecting (B.18), (5.68),
(5.69) and (5.67),

t
1
4 k6∂b

(∫


1

ds

|∇x | +
∫


2

ds

|∇x |
)

= ∂b

(∫ b1(a,b)

− δ

t3/4

db̃

∂aX(ã(X, b̃), b̃)
+
∫ a

a1(a,b)
− dã

∂bX(ã, b̃(X, ã))

)

= ∂bX(a, b)
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⎛

⎜
⎝

∫ b1

− δ

t3/4

−∂aaX(ã(X, b̃), b̃)db̃
(
∂aX(ã(X, b̃), b̃)

)3 +
∫ a

a1

∂bbX(ã, b̃(X, ã))dã
(
∂bX(ã, b̃(X, ã))

)3

+ 1

∂aX(a1, b1)∂bX(a1, b1)

)

= ∂bX(a, b)
⎛

⎜
⎝

∫ b

−∞

�1

(
p∗
(
X− b̃2

))

(
1 + 3�2

1

(
p∗
(
X− b̃2

)))3 db̃ + 1

(1 + 3p∗2a2)2b

+O
(
|X|− 7

6+ 1
18 t

1
12

))

= ∂bY
	 + O

(
|X|− 2

3+ 1
18 t

1
12

)
,

which was the last estimate (5.31) we had to show. We claim that the computa-
tions we performed for this right side of the self-similar zone can be adapted in a
straightforward way in the case where one has to consider more parts of the curve

 inside Zc

0 to parametrise; the integral over 
3, 
4 and 
5 can be treated the very
same way, leading to the same result. ��
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